
 (+(*(+~(*ab)) (+~a) )c)    4 

 (+(*(+ ~(*ab) )~a)c)       2 

 (+(* (+(+~a~ (*b) ))~a)c)  6 

 (+(* (+(+~a~b)) ~a)c)      4 or 5  

 (+ (*(+~a~b)~a) c)         8  

 (+(+(*~a~a)(* (+~b) ~a))c) 4 

 (+(+(*~a~a)(*~b~a))c)     5 

 (+(*~a~a)(*~b~a)c) 

 
Figure 2. Converting a formula to ACMNF 
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A logical formula has the syntax shown in figure 1(a), where a variable stands for a truth value, the 
formula (+ F1...Fn) stands for the logical disjunction of the formulae Fi, (* F1...Fn) denotes the logical 

conjunction of the formulae Fi, and ~F is the negation of F. If a formula has the particular syntax given in 

figure 1(b) we say that the formula is in the ACM Normal Form (ACMNF). 
 
<formula>::= <variable> | ~<formula> | 

             (+<formulae>) | (*<formulae>) 
<variable>::= a lower case letter from the English            

                               alphabet 
<formulae>::= <formula> |  
              <formula><formulae> 

<ACMNF_formula>::= <term> | (+<terms>) 

<term>::= <literal> | (*<literals>) 

<terms>::= <term><term> | <term><terms> 

<literal>::= <variable> | ~<variable> 

<literals>::= <literal><literal> | 

              <literal><literals> 

<variable>::= a lower case letter from the 

                              English alphabet 

a) The general syntax of a formula b) The ACMNF syntax of a formula 

Figure 1. Formula syntax 
 

A formula is converted to ACMNF using the rewriting rules given below, where F represents a formula, S 

stands for a non empty sequence of formulae, and s and s' denote possibly empty sequences of 

formulae. Applying a rewriting rule qr on a formulaFmeans to substitute by r a part of Fthat matches 

the pattern q, as in shown figure 2. The conversion terminates when no rewriting rule can be applied. The 

conversion terminates for any formula, and the result is unique regardless which rules are applied on 
which parts of the formula and in which order. 
 

1. ~~FF      

2. ~(*FS)(+~F~(*S))   3. ~(+FS)(*~F~(+S)) 

4. (+F)F              5. (+s(+S)s')(+sSs')     

6. (*F)F              7. (*s(*S)s')(*sSs')     

8. (*s(+FS)s')(+(*sFs')(*s(+S)s')) 

 
A set of axioms is represented as a list (V1 V2...Vn) of 

variables that are true. A variable that is not in the list is 
false. A proof of a formula F according to a set of axioms A 

is a term from the ACMNF of F such that the term is true according to A. For instance, the terms (*~a~a) 

and c are the proofs of the formula (+(*(+~(*ab))(+~a))c) according to the axioms (bc).  
 

The problem is to code a proof generator that for a given formula F, a set of axioms A, and a number k 

outputs the next k proofs of F in the order in which they appear in the ACMNF of F. If the proofs are 

exhausted, the generator continues from the first proof of F. For example, generating the first proof of the 

formula (+(*(+~(*ab))(+~a))c) according to the axioms (bc) yields (*~a~a). Generating three more 

proofs produces c, (*~a~a), and c. If the ACMNF of a formula contains similar terms, as in the last 

example in figure 3, these terms are considered distinct.  
 

Write a proof generator that reads sets of data from the 
standard input. The content of a data set is F A k1...kn 0, 

n0, where F is a formula, A is a set of axioms, and k1...kn 

are long integers different than 0. For each ki, 

i1,n, the program generates the next |ki| proofs of F 

and, if ki0, prints these proofs on the standard output. Each printed proof starts from the beginning of a 

line and there are no white spaces between the characters of the proof. The generated proofs are not 
printed if ki0. White spaces are used freely in the input. A formula has at most 500 characters and a 

ACMNF term is at most 80 characters long, not counting white spaces. The input data terminate with an 

end of file, and are correct.  

acmacm

 

Input Output 
(+(*(+~(*ab))(+~a))c)  

(bc)  –3 1 1 0 

(+~x~y~y) () –2 1 0 

c 

(*~a~a) 

~y 

Figure 3. Input/output sample 


