
 (+(*(+~(*ab)) (+~a))c) 4

 (+(*(+ ~(*ab))~a)c) 2

 (+(* (+(+~a~ (*b)))~a)c) 6

 (+(* (+(+~a~b)) ~a)c) 4 or 5

 (+ (*(+~a~b)~a) c) 8

 (+(+(*~a~a)(* (+~b) ~a))c) 4

 (+(+(*~a~a)(*~b~a))c) 5

 (+(*~a~a)(*~b~a)c)

Figure 2. Converting a formula to ACMNF

Southeastern European Regional Programming Contest
Bucharest, Romania

October 16, 2010

Problem I
Proof Generator

Input File: I.IN
Output File: ordered output
Program Source File: I.C or I.CPP or I.JAVA

A logical formula has the syntax shown in figure 1(a), where a variable stands for a truth value, the
formula (+ F1...Fn) stands for the logical disjunction of the formulae Fi, (* F1...Fn) denotes the logical

conjunction of the formulae Fi, and ~F is the negation of F. If a formula has the particular syntax given in

figure 1(b) we say that the formula is in the ACM Normal Form (ACMNF).

<formula>::= <variable> | ~<formula> |

 (+<formulae>) | (*<formulae>)
<variable>::= a lower case letter from the English

 alphabet
<formulae>::= <formula> |
 <formula><formulae>

<ACMNF_formula>::= <term> | (+<terms>)

<term>::= <literal> | (*<literals>)

<terms>::= <term><term> | <term><terms>

<literal>::= <variable> | ~<variable>

<literals>::= <literal><literal> |

 <literal><literals>

<variable>::= a lower case letter from the

 English alphabet

a) The general syntax of a formula b) The ACMNF syntax of a formula

Figure 1. Formula syntax

A formula is converted to ACMNF using the rewriting rules given below, where F represents a formula, S

stands for a non empty sequence of formulae, and s and s' denote possibly empty sequences of

formulae. Applying a rewriting rule qr on a formulaFmeans to substitute by r a part of Fthat matches

the pattern q, as in shown figure 2. The conversion terminates when no rewriting rule can be applied. The

conversion terminates for any formula, and the result is unique regardless which rules are applied on
which parts of the formula and in which order.

1. ~~FF

2. ~(*FS)(+~F~(*S)) 3. ~(+FS)(*~F~(+S))

4. (+F)F 5. (+s(+S)s')(+sSs')

6. (*F)F 7. (*s(*S)s')(*sSs')

8. (*s(+FS)s')(+(*sFs')(*s(+S)s'))

A set of axioms is represented as a list (V1 V2...Vn) of

variables that are true. A variable that is not in the list is
false. A proof of a formula F according to a set of axioms A

is a term from the ACMNF of F such that the term is true according to A. For instance, the terms (*~a~a)

and c are the proofs of the formula (+(*(+~(*ab))(+~a))c) according to the axioms (bc).

The problem is to code a proof generator that for a given formula F, a set of axioms A, and a number k

outputs the next k proofs of F in the order in which they appear in the ACMNF of F. If the proofs are

exhausted, the generator continues from the first proof of F. For example, generating the first proof of the

formula (+(*(+~(*ab))(+~a))c) according to the axioms (bc) yields (*~a~a). Generating three more

proofs produces c, (*~a~a), and c. If the ACMNF of a formula contains similar terms, as in the last

example in figure 3, these terms are considered distinct.

Write a proof generator that reads sets of data from the
standard input. The content of a data set is F A k1...kn 0,

n0, where F is a formula, A is a set of axioms, and k1...kn

are long integers different than 0. For each ki,

i1,n, the program generates the next |ki| proofs of F

and, if ki0, prints these proofs on the standard output. Each printed proof starts from the beginning of a

line and there are no white spaces between the characters of the proof. The generated proofs are not
printed if ki0. White spaces are used freely in the input. A formula has at most 500 characters and a

ACMNF term is at most 80 characters long, not counting white spaces. The input data terminate with an

end of file, and are correct.

acmacm

Input Output
(+(*(+~(*ab))(+~a))c)

(bc) –3 1 1 0

(+~x~y~y) () –2 1 0

c

(*~a~a)

~y

Figure 3. Input/output sample

