
Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem A
Concerts

Input File: A.in
Output File: standard output
Time Limit: 0.3 seconds (C/C++)
Memory Limit: 128 megabytes

John enjoys listening to several bands, which we shall denote using A through Z. He

wants to attend several concerts, so he sets out to learn their schedule for the upcoming season.
He finds that in each of the following n days (n ≤ 10

4
), there is exactly one concert. He decides to

show up at exactly k concerts (k ≤ 103
), in a given order, and he may decide to attend more than

one concert of the same band.

However, some bands give more expensive concerts than others, so, after attending a concert
given by band b, where b spans the letters A to Z, John decides to stay at home for at least hb
days before attending any other concert.

Help John figure out how many ways are there in which he can schedule his attendance, in the
desired order. Since this number can be very large, the result will be given modulo 10

9
 + 7.

Input
The first line contains k and n. The second line contains the 26 hb values, separated by spaces.
The third line contains the sequence of k bands whose concerts John wants to attend e.g.,
AFJAZ, meaning A, then F etc. The fourth line contains the schedule for the following n days,
specified in an identical manner.

Output
The number of ways in which he can schedule his attendance (mod 10

9
 + 7).

 Sample input Sample output
2 10

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 (single line)

AB

ABBBBABBBB

10

acmacm

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem B
Bricks

Input File: B.in
Output File: standard output
Time Limit: 0.2 seconds (C/C++)
Memory Limit: 512 megabytes

Let us consider a zone with N boxes, initially empty, numbered from 1 to N. We have M

events given in chronological order. An event is described by a number “p”: a brick falls at
position p. If the box at that position is empty, the brick has to stay there. Otherwise, let’s
consider the full interval of consecutive occupied boxes which contains the box labeled p. We
have two options: we can put the new brick either on the left side or the right side of the interval (if
they exists). The left side of an interval [a,b] is position a - 1, while the right side is position b + 1.

Explanation:
We are given a binary string of length N, where 0 denotes a free box and 1 denotes an occupied
box: 001110111100. If a brick falls at position 8 (or any other position inside the interval [7,10]),
we can place this new brick either at position 6, or at position 11. If it falls at position 2 (which is
unoccupied), the brick must stay there.

Task:
Given N, M and a set of M events (in chronological order), determine the number of distinct
configurations in which we can place the M bricks at the N possible positions (boxes). The
answer should be computed modulo 1.000.000.007. The bricks are unordered, so their order
does not matter. If we consider the binary interpretation (from the explanation), you are asked to
find out how many distinct binary string you can form.

Constraints:

● 1 M 100.000

● 1 M N 1.000.000

● 1 p N

Input

● First line: N, M
● Second line: M numbers denoting the M events (the values for p)

Output

● One number denoting the number of distinct configurations you can obtain modulo
1.000.000.007.

 Sample input Sample output
5 4

2 2 4 4

3

acmacm

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem C
Christmas Tree

Input File: C.in
Output File: standard output
Time Limit: 0.7 seconds (C/C++)
Memory Limit: 512 megabytes

Santa has a Christmas Tree. In computer science terms, a Christmas Tree is a tree with
N nodes where each node has a colour. Initially, all nodes have colour 0. One night, an elf comes
(we call him Elf) to paint the tree because he found it very boring. M consecutive updates were
performed on the given tree the following way: on update number X, Elf opens gift number X
before Christmas (of course, it’s someone else’s gift) and finds a triplet (C, A, B) in it. After that,
he paints with colour C all the nodes which can be found on the chain formed by vertices A and
B. All colours are different from gift to gift, so we can assume that the M colours are M distinct
values from 1 to M. While performing update X, some nodes may already be painted, in which
case they will just be repainted with the new colour (the old one is lost forever :()

Unfortunately, we do not know the M operations (the triplets found in the gifts), but we do know
how the tree looks like in the end (you are given the colour of each node after performing all
updates). Your task is to find a possible solution for the generated final form of the tree. More
precisely, you have to find M triplets (in the correct order), such that if Elf would have found them
in the gifts, he would obtain the Christmas Tree described in the input. Since there can be
multiple solutions, you can display any of them.

Constraints

 1 N, M 100.000

 The Christmas Tree will contain colours with indexes between 1 and M

 It is guaranteed that there always exists at least one solution

 After all M operations all nodes will have been painted at least once

Input

 First line: N, M

 Second Line: N integers between 1 and M. The X-th value denotes the colour of the
vertex number X

 The next N - 1 lines describe the edges of the tree. Each such line contains a pair of
numbers (A, B), meaning that there is an edge between node A and node B

Output

 M lines. Line number X should contain a triplet (C, A, B), denoting the X-th gift found by
Elf. Warning: Elf performs the drawings in the order of your output, so order DOES
matter.

acmacm

 Sample input Sample output
6 3

1 3 2 1 1 2

1 4

2 4

3 4

4 5

5 6

2 6 3

1 5 1

3 2 2

5 3
3 2 1 2 1
1 2
1 3
1 4
4 5

1 3 5

2 2 4

3 1 1

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem D

Harry Potter and The Vector Spell

Input File: D.in
Output File: standard output
Time Limit: 1 second (C/C++)
Memory Limit: 256 megabytes

Harry Potter has found another strange spell in Half-blood Prince diary, that could

generate a different binary vector of size M. As he is not the best magician, this spell does not
work perfectly so he could generate only vectors where exactly 2 elements are non zero.
Harry has used this spell N times and he has constructed a matrix of M rows and N columns,
where all generated vectors are columns.

Now Harry has a class of Magical Matrix Theory, where the professor asked him to calculate the
rank of such a matrix. You are here to help him!

Operations in Magical Matrix Theory satisfied next rules:

+ 0 1 * 0 1

0 0 1 0 0 0

1 1 0 1 0 1

The rank of a matrix A corresponds to the maximal number of linearly independent columns of A.
The vectors in a set are said to be linearly independent if the equation , where for can only be satisfied by for .

Input
On the first line two integers - M (size of vectors) and N (number of vectors generated by Harry).
Each of the next M lines has the format: , where is the number of non-zero

elements in row . The next numbers are column indexes (), which

are non-zero in this row. For more details, see examples.

Output

Sample input 1 Sample output 1
3 3

2 1 3

2 1 2

2 2 3

2

acmacm

Sample input 2 Sample output 2
4 3

3 1 2 3

1 1

1 2

1 3

3

In first example, Harry has generated 3 vectors:

and the matrix is:
But .

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem E
Looping Playlist

Input File: E.in
Output File: standard output
Time Limit: 1.5 seconds (C/C++/Java)
Memory Limit: 512 megabytes

A local radio station had a hardware malfunction and is stuck playing the same playlist in a loop.
Equipped with pitch detection software, you set out to determine a lower bound to the number of
songs in the playlist.

You've managed to record the whole loop, starting at an arbitrary point, and ending at the same
point. The pitch detection software's output consists of the N detected musical notes in the order
in which they were played.

Every musical note has one of 12
names: Do, Do#, Re, Re#, Mi, Fa,
Fa#, Sol, Sol#, La, La#, or Si. The
interval between any two
consecutive notes from the list is
called a half-step. Notes that are 12
half-steps apart share the same
name; therefore, the note that
follows Si is called Do, and so on.

Each of the songs is made up of two or more notes, all belonging to a single major scale.

All major scales are defined by their root note and are comprised of eight notes, of which seven
have distinct names. The pitch offsets from the root note to each note in the scale are 0, 2, 4, 5,
7, 9 , 11 and 12 half-steps, respectivley (the first and last notes have the same as the root note).
It is possible to build a major scale based on any root note. For example:

 Root
+0

Root
+2

Root
+4

Root
+5

Root
+7

Root
+9

Root
+11

Root
+12

Do major Do Re Mi Fa Sol La Si Do
Do# major Do# Re# Fa Fa# Sol# La# Do Do#
Re major Re Mi Fa# Sol La Si Do# Re
Re# major Re# Fa Sol Sol# La# Do Re Re#
Mi major Mi Fa# Sol# La Si Do# Re# Mi

…et cetera…

Your task is to determine M, which is the minimum number of songs that the playlist contains.

acmacm

Do# Re# Fa# Sol# La# Do# Re# Fa# Sol# La#

Do Re Mi Fa Sol La Si Do Re Mi Fa Sol La Si Do

Input
The first line of the input file contains N <= 10 000 000 representing the number of musical notes
detected. The following N lines each contain a musical note. All notes are capitalized as shown
previously (i. e. the first letter is upper case; the rest are lower case).

Output
The output has to contain M.

 Sample input Sample output
8

La

Si

Do

Si

La

Sol

Fa

Mi

1

9

Mi

Si

Sol

Do

Re

Fa#

Fa

Do

La

2

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem F
Binary Transformations

Input File: F.in
Output File: standard output
Time Limit: 1 second (C/C++)
Memory Limit: 256 megabytes

There are n bits. Each bit i has a value ai (0 or 1) and an associated cost ci. We can

change the value of bit i with a cost computed as the sum of all the costs cj of the bits j such that
aj = 1 AFTER bit i is changed. What is the minimum amount that should be paid to set each bit i
to a specified value bi.

Input

The first line contains the integer n (1 n 5 x 10
3
) - the number of bits

The second line contains n integers ci (1 ci 10
9
) - the costs associated with the bits

The third line contains the original n values of the bits ai - the original values of the bits
The fourth line contains the required n values of the bits bi - the required values of the bits

Output
Print one number - the minimum cost.

 Sample input Sample output
5

5 2 6 1 5

01110

10011

21

acmacm

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem G
Robots

Input File: G.in
Output File: standard output
Time Limit: 0.2 seconds (C/C++)
Memory Limit: 128 megabytes

You’re the leading designer of a complex robot, that will explore human unreachable

locations. Your job is to design a robot that will go as far as possible. To do this, you have n
available energy sources. The i

th
 source is capable of accelerating the robot by a rate of ai (m/s

2
)

and can do this for a total of si seconds. The robot is initially at rest (its initial velocity is zero).
You have to decide the order in which to use the sources in order to maximize the total distance
traveled by the robot. You will use one source until si seconds have elapsed, then immediately
switch to another unused source (the switch is instantaneous). Each source can be used only
once.

Given the accelerations and durations of each source, write an efficient program to determine the
optimal order of the sources, in order to maximize the total distance traveled. Your program must
compute the difference between the traveled distance in the optimal case and in the default case
(the order given by the input data).

Physics background: if the velocity is v before you start using a source whose acceleration is a
then, after t seconds, the robot has traveled a total vt+1/2at

2
 meters, and the final velocity will be

v' = v+at.

Input
The input file starts with the number n (1 ≤ n ≤ 10

4
) of sources. Starting from a different line

follows the n space-separated acceleration and duration for each source (positive integer
numbers).

Output
The output file contains the computed difference between the traveled distance in the optimal
case and in the default case (the order given by the input data), with one decimal.

 Sample input Sample output
2

2 1

30 2

56.0

acmacm

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem H
Cat and Mouse

Input File: H.in
Output File: standard output
Time Limit: 10 seconds (C/C++)
Memory Limit: 512 megabytes

A cat and a mouse play a game inside an undirected tree graph with N vertices
numbered from 1 to N. The cat is initially located in vertex 1, and the mouse in vertex M. Each
edge of the tree has a unique quantity of cheese (from 1 to N-1). The cat and the mouse move
alternately, starting with the mouse. At its turn, the mouse moves from its current vertex to a
neighboring vertex, using the edge with the largest quantity of cheese. If the cat is located in the
chosen vertex, then the mouse will move to the second best neighboring vertex (i.e. the vertex
connected to the current vertex with an edge having the 2nd largest quantity of cheese). If there
is no second vertex to move to, then the game ends and the cat wins. At its turn, the cat can
move to any neighboring vertex or stay in its current vertex.

You control the cat and you want to win the game as soon as possible. Find the minimum
possible number of moves the mouse will make before the cat wins the game.

Input
The first line of the input file contains the number of test cases T. Then the T test cases follow.
The 1st line of each test case contains the number N and M. The next N-1 lines contain two
numbers u and v each, denoting an edge between the vertices u and v. The k

th
 of these edges

(1<=k<=N-1) has a quantity of cheese equal to k.

Output
For each test case, in the order given in the input, print one line containing the minimum number
of moves the mouse will make before the cat wins the game (assuming the cat plays optimally).
Print -1 if the cat cannot win the game.

Constraints

 2 N 50000

 1 T 100

 1 u, v N

 The given graph is a tree in each test case.

 The cheese along the edges is not eaten by the mouse. So an edge always has the
same quantity of cheese throughout the game.

 The cat can move to the same vertex as the mouse. The mouse is not harmed by such a
move and the game just continues normally.

acmacm

 Sample input Sample output
3

10 10

6 7

6 5

5 4

4 1

1 2

1 3

7 8

8 9

9 10

10 6

6 7

6 5

5 4

4 1

1 2

1 3

7 8

8 9

9 10

13 5

5 6

6 7

7 8

8 9

9 10

10 11

11 12

12 13

5 4

4 3

3 1

1 2

6

4

4

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem I
Tetris

Input File: I.in
Output File: standard output
Time Limit: 2.5 seconds (C/C++)
Memory Limit: 512 megabytes

Sonya is looking through her old toys. Among cubes and dolls she found the old video game Tetris

she loved playing with. This Tetris is quite unusual, it has pieces of 10 different shapes and a grid of width 3
and height 10. You can imagine the game as an infinite stream of incoming pieces in which a sequence a is
repeated continuously.

The girl decides to play Tetris. Before a piece falls down, Sonya can rotate it by any angle divisible by 90
degrees, but she can't flip it over. If all the cells in a row are covered, the row disappears, and all the rows on
top of it fall down, emptying the row above them. The game is over when there is no more room for the next
piece on the grid.

Sonya is smarter now, and she wants to maximize the number of incoming pieces before the game is over.
The game might also never end. In this case you should tell Sonya not to start playing.

Input

The first line contains the integer n (1 n 50) - the length of the sequence a

The second line contains n integers ai (0 ai 9) - the elements of the sequence a

Output
Print one number - the maximum number of pieces that will fall down before game termination or
-1, if it is possible to play and get an infinite number of pieces falling down.

 Sample input Sample output
1

0
4

2

3 4
12

3

5 1 1

-1

acmacm

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem J
Cunning Friends

Input File: J.in
Output File: standard output
Time Limit: 2 seconds (C/C++)
Memory Limit: 64 megabytes

Anthony and his friends Ben and Chris decided to play a game. They have N piles of

stones such that the i
th
-pile contains Ai stones. In one move a player chooses one pile and may

take any non-zero number of stones from it. The players take turns. Anthony goes first then Ben
and then Chris. If some player cannot make a move (no more stones exist) he loses. Ben
colluded with Chris so their goal is to make Anthony lose. But Anthony doesn't want to lose. You
have to find out if Anthony can avoid defeat if all players play optimally.

Input

The first line contains one integer N (1 N 10
5
).

The next line contains N integers Ai (1 Ai 10
9
).

Output
Print "Lose" if Anthony will lose in this game and "Win" otherwise.

 Sample input Sample output
3

2 2 1

Win

2

4 7

Lose

acmacm

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem K
Escape Room

Input File: K.in
Output File: standard output
Time Limit: 1 second (C/C++)
Memory Limit: 64 megabytes

As you know, escape rooms became very popular since they allow you to play the role of

a video game hero. One such room has the following quiz. You know that the locker password is
a permutation of N numbers. A permutation of length N is a sequence of distinct positive integers,
whose values are at most N. You got the following hint regarding the password - the length of the
longest increasing subsequence starting at position i equals Ai. Therefore you want to find the
password using these values. As there can be several possible permutations you want to find the
lexicographically smallest one. Permutation P is lexicographically smaller than permutation Q if
there is an index i such that Pi < Qi and Pj = Qj for all j < i. It is guaranteed that there is at least
one possible permutation satisfying the above constraints.
Can you open the door?

Input

The first line of the input contains one integer N (1 N 10
5
).

The next line contains N space-separated integer Ai (1 Ai N).
It’s guaranteed that at least one possible permutation exists.

Output
Print in one line the lexicographically smallest permutation that satisfies all the conditions.

 Sample input Sample output
4

1 2 2 1

4 2 1 3

1

1

1

acmacm

Southeastern European Regional Programming Contest
Bucharest, Romania – Vinnytsya, Ukraine

October 21, 2017

Problem L
Divide and Conquer

Input File: L.in
Output File: standard output
Time Limit: 2 seconds (C/C++)
Memory Limit: 64 megabytes

Once upon a time in a far away kingdom there were 2 kings that ruled their realm

together. This kingdom has N towns which are connected with undirected roads. Each king owns
a disjoint subset of these roads, and together they own all of the roads. You know that each king
owns exactly N - 1 roads such that it is possible to reach any town from other town using these
roads. There might be multiple roads between the same pair of towns.

In this story there is also an Evil Lord that one day decides to conquer the kingdom. It's a well
known strategy to divide a kingdom to more easily conquer it. So the Evil Lord is interested in the
minimum number of roads he has to destroy such that there exists a pair of towns X and Y with
the property that it is impossible to reach Y from X. He is also interested in the number of ways to
delete the minimum number of roads.

Your task is to find these 2 numbers, the minimum roads the Evil Lord has to destroy to divide the
kingdom and the number of ways he can do this. As the number of ways to delete roads may be
very big, output it modulo 1.000.000.007(10

9
 + 7).

Input

The first line of the input contains one integer N (2 N 10
5
).

Each of the next N -1 lines contains 2 integers ai, bi, which means that first king owns the road

between cities ai and bi (1 ai, bi N).
Each of the next N -1 lines contains 2 integers ai, bi, which means that second king owns the

road between cities ai and bi (1 ai, bi N).

Output
Print two integers - the minimum number of roads you need to destroy in order to disconnect the
graph and number of ways to do this modulo 10

9
 + 7.

 Sample input Sample output
5

1 3

3 5

2 3

1 4

1 4

4 5

2 5

3 5

2 2

2

1 2

1 2

2 1

acmacm

