PROBLEM B Sentence Generator Input File Name: B.DAT Source File Name: B.PAS or B.C or B.CPP A grammar of a language is a set of rules which show the way syntactically correct sentences are build in the language. If the number of sentences is finite then these rules can be specified as a directed acyclic AND-OR graph, as that illustrated in figure 1. We assume, by convention, that the AND nodes are marked by *, the OR nodes are marked by | and the leaf nodes are labeled by any printable character different than * and |. Each node of the graph designates a sequence of sentences. Generally, such a sequence can contain identical members. We say that a node can generate the sequence of sentences it designates as follows: Figure 1. An AND-OR graph * A leaf generates a single sentence which is the label of the node. For example the node labeled a in figure 1 generates the sentence a. * An OR node generates the sequence of sentences which is the union of the sequences generated by its successors. For instance, the sole OR node in figure 1 generates the sequence of sentences a, b. The order of generation (i.e. the order of sentences in the sequence) is the order of the node successors. * An AND node generates sentences computed as the concatenation of the sentences generated by its successors. If there are n successors the concatenation uses n sentences, each generated by a successor. In addition, the concatenation is performed left to right according to the order of the successors. For example, the AND node from figure 1 generates the sequence of sentences ab, bb. This sequence is computed by appending the sentence generated by the leaf node b to each sentence generated by the OR node. Generally, if i_0,i_1,...,i_n is the compound index of the i-th sentence generated by an AND node with n successors, where i_k is the index of a sentence corresponding to the k-th successor, then the sequence of sentences generated by the AND node is in lexicographic ascending order of the compound indexes of its members. The sentences generated by the root node of the graph are the sentences of the language whose syntax is described by the graph. The graph from figure 1 describes a language with two sentences ab and bb. The sentences designated by a node of the graph can be generated all at once, or incrementally, a number of sentences at a time. The term incrementally means that the sentences generated at a given time are the next sentences which follow from those previously generated. For example, an incremental generator working for the root node of the graph in figure 1 will be able to generate on its first call the sentence ab and on its second call the sentence bb. By convention, if the sentences the node are exhausted the generator restarts with the first sentence of the node. In the example above for the third call the generator will produce ab. Your problem is to write a program which behaves as an incremental sentence generator. The program reads a graph, as explained below, and then, one at a time, an integer k. Let |k| be the absolute value of k. The program generates the next |k| sentences of the root node of the graph, prints k and, if k > 0, prints the generated sentences. The program continues with a new set of data, if any, when it reads a null value. The program reads all its data sets from a text input file. The integer from the first line of the file is the number of data sets. Each data set contains a graph description and a sequence of integers which control the sentence generation process for the graph. The graph is read from the input file as follows: 1. The first line of the graph data contains a positive integer, say n, which is the number of graph nodes. 2. The next n input lines describe the nodes, a line for each node of the graph. The nodes are numbered from 0 to n-1. The root node is always numbered 0. For a leaf node the input line has the format node_number node_symbol where node_number is a positive integer and node_symbol is a character. If the node is an AND or an OR node the input line is node_number node_mark number_of_successors succ_0 ... succ_m where node_number is a positive integer, node_mark is the character * for an AND node or the character | for an OR node, the number_of_successors is a strictly positive integer, and succ_i, i= 0,m (m= number_of_successors-1), is a positive integer designating the number of a graph node which is a successor of the currently described node. All the elements of an input line start from the beginning of the line and are separated by single spaces. Moreover, it is known that a graph can have at most 50 nodes, each node with at most 10 successors, and the length of a sentence can be at most 80 characters. In the example below, the first line declares a single data set, the next 5 lines specify the graph from figure 1 and the remaining 3 lines control the sentence generation process. 1 -- number of data sets 4 -- graph with 4 nodes: 0,1,2,3 0 * 2 1 3 1 | 2 2 3 2 a 3 b -1 -- generation control 3 0 For each graph read from the input file, the output of the program (on a text file) is as follows: for each integer k, which is read after a graph description, the program outputs k and, if k > 0 the next k sentences of the root node, one sentence on a line. Each sentence starts at the beginning of the line and there are no spaces between the sentence characters. If k < 0 the generated sentences are not printed. The output corresponding to the input data shown above is -1 3 bb ab bb 0