

2014 ACM ICPC

Southeast USA Regional

Programming Contest

15 November, 2014

Division 1
A: Alchemy ... 1

B: Stained Carpet ... 3

C: Containment .. 4

D: Gold Leaf ... 5

E: Hill Number ... 7

F: Knights... 8

G: Word Ladder .. 9

H: Shuffles .. 11

I: Stamp Stamp ... 12

Hosted by:

Florida Institute of Technology

Georgia Institute of Technology

University of West Florida

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 1 of 13 15 November, 2014

A: Alchemy
Since the days of yore, alchemy has been studied and practiced. The practice makes
alchemists able to transmute materials into other forms. Transmuting materials requires
drawing a transmutation circle on the ground. A little known fact about transmutation
circles is they can be drawn inside or outside other transmutation circles. By activating
certain configurations in the correct order, more powerful transmutations can be
produced. Activating circles incorrectly can have drastic effects on the alchemist's body.

A young alchemist named Nicholas Flamel would like to learn the ways of alchemy. He is
going to draw several configurations of transmutation circles on the ground. When a
circle is drawn it burns bright red representing the element of fire. The drawing of the
circle itself produces no energy, but it has an effect on any and all circles that are
already drawn inside! All of the circles inside the newly drawn circle quickly change to
their complement elements. Fire changes to a cool blue representing water. Circles that
were blue for water will burn fiery red once again. This transformation can either create
or drain energy. Interestingly, it is the transformation, and not the drawing, that
emanates energy. Beware, energy can go negative at any time draining the alchemist's
life force.

Nicholas wants to get as much out of his transmutations as possible. To do so requires
him to draw his circles in an order that releases the most energy. Determine the
maximum amount of energy that can be released, and the order in which he should
draw the circles.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will start with a line with a single integer n
(1≤n≤2,000) indicating the number of circles. The next n lines will describe the circles, in
order, from circle 1 to circle n. Each line will describe its circle with 5 integers, with a
single space between integers:

x y r a b

Where (x,y) is the center of the circle (-20,000≤x,y≤20,000), r is the radius of the circle
(1≤r≤20,000), a is the energy released in the transition from fire to water, and b is the
energy released in the transition from water to fire (-500≤a,b≤500). It is guaranteed that
no two circles’ edges will intersect.

Output

Output exactly two lines. On the first line output a single integer representing the
maximum energy that can be produced by activating the circles. On the second line
output the order of drawing the circles that can produce that energy. If more than one
order will work, output the one that comes first lexicographically. Output a single space
between integers. Output no extra spaces.

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 2 of 13 15 November, 2014

Sample Input Sample Output

8

0 0 100 -100 -100

0 0 50 -10 -10

0 0 10 -100 1000

0 0 1 100 100

1000 1000 100 -1 1

1000 1000 50 -1 1

1000 1000 10 -1 1

1000 1000 1 -1 1

1200

4 3 1 2 5 6 7 8

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 3 of 13 15 November, 2014

B: Stained Carpet
The Algebraist Carpet Manufacturing (ACM) group likes to produce area carpets based
upon various geometric figures. The 2014 ACM carpets are all equilateral triangles.
Unfortunately, due to a manufacturing defect, some of the carpets are not as stain-
resistant as intended. The ACM group is offering to replace each defective carpet that
contains a stain.

The web form used to report the stained carpet requests the three distances that the
stain is away from the corners of the rug. Based upon these three numbers, you need to
compute the area of the rug that is to be sent to the customer, or indicate that the
customer’s carpet doesn’t come from ACM.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with three floating
point numbers a, b and c (0<a,b,c≤100) representing the distances from the stain to
each of the three corners of the carpet. There will be a single space between a and b,
and between b and c.

Output

Output a single line with a single floating point number. If there is a carpet that satisfies
the constraints, output the area of this carpet. If not, output -1.000. Output this
number to exactly three decimal places, rounded. Output no spaces.

Sample Input Sample Output

1 1 1.732051 1.732

1 1 3.0 -1.000

1.732051 1.732051 1.732051 3.897

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 4 of 13 15 November, 2014

C: Containment
A 10x10x10 three-dimensional grid of tightly packed cubic atomic energy cells aboard
the starship Fiugtuwf is reporting failures on several of its cells. The ship's engineer must
set up enclosures that will contain all of the cells that are reported to be failing, in order
to avoid a meltdown. It is imperative that the enclosures be finished in the shortest
amount of time, even if that requires some healthy cells to be enclosed along with the
defective ones. The enclosures are formed by square panels which fit perfectly between
adjacent cells, or can be placed along the sides of the cells on the edges of the grid.
Each panel is exactly the size and shape of a face of one of the cubic cells. For full
containment, each enclosure must be completely closed. Given the coordinates of each
defective cell, report the minimum number of panels required to contain the problem.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will start with a line with a single integer n
(0≤n≤1,000) indicating the number of defective cells. Each of the next n lines will hold an
(x,y,z) coordinate (0≤x,y,z≤9) indicating the location in the grid of a defective cell. All of
the coordinates in a test case will be unique.

Output

Output a single line with a single integer, indicating the minimum number of panels
required to contain the defective cells. Output no spaces.

Sample Input Sample Output

1

0 0 0

6

2

0 0 0

0 0 1

10

3

0 0 0

0 0 1

0 1 1

14

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 5 of 13 15 November, 2014

D: Gold Leaf
Gold Leaf is a very thin layer of gold, with a paper backing. If the paper gets folded and
then unfolded, the gold leaf will stick to itself more readily than it will stick to the paper,
so there will be patches of gold and patches of exposed paper. Note that the gold leaf
will always stick to itself, rather than the paper. In the following example, the paper was
folded along the dashed line. Notice how the gold leaf always sticks to one side or the
other, never both.

Consider a crude digital image of a sheet of gold leaf. If the area covered by a pixel is
mostly gold, that will be represented by a ‘#’. If it’s mostly exposed paper, it will be
represented by a ‘.’. Determine where the sheet was folded. The sheet was folded

exactly once, along a horizontal, vertical, or 45 degree or 135 degree diagonal line. If the
fold is horizontal or vertical, it is always between rows/columns. If the fold is diagonal,
then the fold goes through a diagonal line of cells, and the cells along the fold are
always ‘#’.

The Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will begin with a line with two integers, n and m
(2≤n,m≤25), where n is the number of rows, and m is the number of columns of the
image. Each of the next n lines will contain exactly m characters, all of which will be
either ‘#’ or ‘.’. This represents a crudely collected digital image of the sheet of gold

leaf. There is guaranteed to be at least one ‘.’, and there is guaranteed to be a solution.

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 6 of 13 15 November, 2014

The Output

Output a single line with four integers, with a single space between integers, indicating
the places where the fold hits the edges of the paper. Output no extra spaces. Output
them in this order:

 r1 c1 r2 c2

where (r1,c1) and (r2,c2) are row/column coordinates (r=row, c=column). The top left
character of the image is (1,1) and the bottom right is (n,m).

If the fold is horizontal or diagonal, list the left coordinates before the right. If the fold is
vertical, list the top coordinates before the bottom.

 If the fold is horizontal, use the coordinates above the fold. If the fold is vertical, use the
coordinates to the left of the fold. If the fold is diagonal, use the coordinates of the edge
pixels that the fold goes through.

If more than one fold is possible, choose the one with the smallest first coordinate, then
the smallest second coordinate, then third, then fourth.

Sample Input Sample Output

8 10

#.#..##..#

####..####

###.##....

...#..####

....##....

.#.##..##.

##########

##########

3 1 3 10

5 20

###########.#.#.#.#.

###########...#.###.

##########..##.#..##

###########..#.#.##.

###########.###...#.

1 15 5 15

5 5

.####

###.#

##..#

#..##

4 1 1 4

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 7 of 13 15 November, 2014

E: Hill Number
A Hill Number is a positive integer, the digits of which possibly rise and then possibly fall,
but never fall and then rise. For example:

12321 is a hill number.

12223 is a hill number.

33322111 is a hill number.

1232321 is not a hill number.

Given a positive integer, if it is a hill number, print the number of positive hill numbers
less than or equal to it. If it is not a hill number, print -1.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single integer n (1≤n≤1018).

Output

Output a single line with a single integer. If the input is a hill number, then output the
number of hill numbers less than or equal to it. If the input is not a hill number, then
output -1. Output no spaces.

Sample Input Sample Output

10 10

55 55

101 -1

1000 715

1234321 94708

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 8 of 13 15 November, 2014

F: Knights
Magnus is the youngest chess grandmaster ever. He loves chess so much that he
decided to decorate his home with chess pieces. To decorate his long corridor, he
decided to use the knight pieces. His corridor is covered by beautiful square marble tiles
of alternating colors, just like a chess board, with n rows and m columns. He will put
images of knights on some (possibly none) of these tiles. Each tile will contain at most
one knight.

The special thing about his arrangement is that there won’t be any pair of knights can
attack each other. Two knights can attack each other if they are placed in two opposite
corner cells of a 2 by 3 rectangle. In this diagram, the knight can attack any of the Xs.

Given the dimension of the long corridor, your task is to calculate how many ways
Magnus can arrange his knights. Two arrangements are considered different if there
exists a tile which contains a knight in one arrangement but not in the other
arrangement (in other words, rotations and reflections are considered different
arrangements).

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with two integers n
and m (1≤n≤4, 1≤m≤109) representing the dimensions of the carpet. There will be a
single space between n and m.

Output

Output a single line with a single integer representing the number of possible
arrangements, modulo (109+9). Output no spaces.

Sample Input Sample Output

1 2 4

2 2 16

3 2 36

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 9 of 13 15 November, 2014

G: Word Ladder
A Word Ladder is a puzzle in which you transform one word into another, by changing
one letter at a time. But, there’s a catch: every word that you form in each step must be
in the dictionary! Here’s an example of how to transform CAT into GAS:

CATCARWARWASGAS

Of course, you want to use the fewest number of transitions possible. These puzzles can
be tough, and often you’ll think to yourself: “Darn it! If only [some word] was in the
dictionary!”

Well, now is your chance! Given a dictionary, and a starting and ending word, what ONE
single word could you add to the dictionary to minimize the number of steps to get from
the starting word to the ending word, changing only one letter at a time, and making
sure that every word at every step is in the dictionary?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will start with a line with a single integer n
(2≤n≤1,000) which indicates the number of words in the dictionary. The dictionary will
follow on the next n lines, with one word per line. All words will consist of between 1
and 8 capital letters only, and all of the words in a test case will be of the same length.
The first word in the list will be the starting word of the word ladder, and the second will
be the ending word of the word ladder.

Output

Output exactly two lines. The first line holds the one single word that you would add to
the dictionary, and the second holds an integer indicating the minimum number of steps
to get from the starting word to the ending word, adding your word. Output no spaces.

It is possible that there’s more than one word you can add that will make your path as
short as possible. In this case, output the solution word that comes first alphabetically.

It is possible that there’s no word you can add that will that will make your path any
shorter. In this case, output 0 (zero) as the word.

It is possible that there’s no word you can add that makes the solution possible. In this
case, output 0 (zero) as the word, and -1 as the number of steps.

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 10 of 13 15 November, 2014

Sample Input Sample Output

3

CAT

DOG

COT

COG

3

2

CAT

DOG

0

-1

4

CAT

DOG

COT

COG

0

3

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 11 of 13 15 November, 2014

H: Shuffles
The most common technique for shuffling a deck of cards is called the Riffle or Dovetail
shuffle. The deck is split into two stacks, which are then interleaved with each other.
The deck can be split anywhere, and the two stacks can be interleaved in any way.

For example, consider a deck with 10 unique cards:

1 2 3 4 5 6 7 8 9 10

Split them somewhere:

1 2 3 4 5 6 7 8 9 10

And interleave them in some way:

 1 2 7 3 8 9 4 5 10 6

Do it again. Split them somewhere:

 1 2 7 3 8 9 4 5 10 6

And interleave them in some way:

 3 8 1 9 4 5 2 7 10 6

This is one possible ordering after 2 shuffles. Suppose there are n unique cards, and that
they start out perfectly ordered: 1, 2, 3, ..., n. Given an ordering of the deck, what is the
smallest number of shuffles that could possibly put the deck in that order?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will begin with a single integer n
(1≤n≤1,000,000) indicating the number of cards in the deck. On the next line will be n
unique integers c (1≤c≤n), with a single space between them, indicating an ordering of
the n cards. The values c are guaranteed to be a permutation of the numbers 1..n.

Output

Output a single line with a single integer indicating the minimum number of shuffles
that could possibly put the deck in the given order. Output no spaces.

Sample Input Sample Output

10

1 2 7 3 8 9 4 5 10 6

1

10

3 8 1 9 4 5 2 7 10 6

2

8

2 1 4 3 6 5 8 7

3

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 12 of 13 15 November, 2014

I: Stamp Stamp
Bureaucrats love bureaucracy. This assertion seems fairly obvious but a less obvious
observation is the amount of paperwork this means!

When paperwork is complete, a bureaucrat stamps the official document with their
official stamp of office. Some bureaucrats are extra thorough and stamp the document
multiple times. We are interested primarily in bureaucrats that stamp their documents
exactly twice.

A bureaucrat stamp takes up some rectangular area. For example, the below is a
bureaucrat stamp:

..#..#..

.######.

..#..#..

When the bureaucrat stamps the paper twice it is potentially moved to a different
location on the paper, but it is not rotated. The stamp will always be axis aligned. The '#'
symbol on a stamp covers the paper with black ink at the cell on the paper that is
pressed. A '.' doesn't leave any marks on the paper nor does it remove a mark. If a cell

of the paper is marked twice it is not discernable from a cell that is marked once.

You will be given a mark on a paper that was stamped twice by a stamp. Your task is to
determine the minimum number of nubs ('#' symbols) that could have possibly been on
the original stamp. The paper is guaranteed to be stamped twice by the entire stamp.
(All of the stamp will be on the paper in both stampings)

Consider the following mark on paper:

..#..#..

.######.

.######.

..#..#..

It could have been made with the first stamp example, with the second stamping exactly
one cell below the first. Or, it could have been made with a stamp that looks like this,
stamped side-by-side:

..#..

.###.

.###.

..#..

In this case, 8 would be the correct answer.

2014 ACM ICPC Southeast USA Regional Programming Contest

 Page 13 of 13 15 November, 2014

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will begin with a line with two integers, n and m
(1≤n,m≤500) indicating the height and width of the mark on the paper. Each of the next
n lines will have exactly m characters, consisting only of ‘#’ and ‘.’, representing the
mark. Every test case will have at least one ‘#’.

Output

Output a single line with a single integer, indicating the minimum number of nubs of a
bureaucrat’s stamp that could have possibly made the input mark by stamping exactly
twice. Output no spaces.

Sample Input Sample Output

4 8

..#..#..

.######.

.######.

..#..#..

8

3 3

...

.#.

...

1

2 6

.#####

#####.

5

2 5

.#.#.

#.#.#

3

	A: Alchemy
	Input
	Output

	B: Stained Carpet
	Input
	Output

	C: Containment
	Input
	Output

	D: Gold Leaf
	The Input
	The Output

	E: Hill Number
	Input
	Output

	F: Knights
	Input
	Output

	G: Word Ladder
	Input
	Output

	H: Shuffles
	Input
	Output

	I: Stamp Stamp
	Input
	Output

