

2016 ACM ICPC

Southeast USA Regional

Programming Contest

Division 1
Alphabet ... 1

Base Sums .. 2

Buggy Robot ... 3

Enclosure .. 5

Illumination .. 6

InTents ... 7

Islands .. 9

Paint ... 10

Periodic Strings ... 11

Water ... 12

Zigzag ... 14

Hosted by:

College of Charleston

Florida Institute of Technology

Kennesaw State University

University of West Florida

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 1 of 14 5 November, 2016

Alphabet
A string of lowercase letters is called alphabetical if some of the letters can be deleted
so that the only letters that remain are the letters from `a' to `z' in order.

Given a string s, determine the minimum number of letters to add anywhere in the
string to make it alphabetical.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The only line of input contains a string s (1≤|s|≤50) which
contains only lowercase letters.

Output

Output a single integer, which is the smallest number of letters needed to add to s to
make it alphabetical.

Sample Input Sample Output
xyzabcdefghijklmnopqrstuvw

3

aiemckgobjfndlhp

20

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 2 of 14 5 November, 2016

Base Sums
Given three values n, a, and b, find the smallest m>n such that the sum of the digits of
m in base a is the same as the sum of digits of m in base b.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. There will be a single line of input, with three integers, n
(0≤n≤1016), a and b (2≤a<b≤36), all of which will be in base 10.

Output

Output a single integer, m, which is the smallest number greater than n such that the
sum of its digits in base a is the same as the sum of its digits in base b. Output m in base
10.

Sample Input Sample Output
66 10 16

144

24 4 15

90

9358385 11 32

9437362

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 3 of 14 5 November, 2016

Buggy Robot
There is a robot in a 2D grid. The grid consists of empty cells and obstacles, and there is
exactly one cell that is the exit. The robot will exit the grid if it ever reaches the exit cell.
Empty cells are denoted as '.', the robot's initial position is denoted as 'R', obstacles are
denoted as '#', and the exit is denoted as 'E'.

You can program the robot by sending it a series of commands. The series of commands
is a string consisting of characters: 'L' (move one square left), 'U' (move one square up),

'R' (move one square right), or 'D' (move one square down). If the robot would run into
an obstacle or off the edge of the grid, it will ignore the command (but it will continue
on to future commands, if there are any).

Your friend sent a series of commands to the robot, but unfortunately, the commands
do not necessarily take the robot to the exit.

You would like to fix the string so that the robot will reach the exit square (note once
the robot reaches the exit, it stops, even if there are more commands in the string). You
can fix the string with a sequence of operations. There are two operations: inserting a
command anywhere in the string, or deleting a command anywhere in the string. What
is the minimum number of operations you would need to fix the program?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two integers, r and c (2≤r,c≤50)
which are the number of rows and number of columns of the grid. The next r lines will
each contain a string with exactly c characters. Each character is one of ‘.’ (Empty), ‘R’
(the Robot), ‘#’ (an Obstacle), or ‘E’ (the Exit). This is the grid. There will be exactly one
‘R’ and one ‘E’ in the grid, and it will always be possible to navigate the robot to the

exit. The last line of input will contain a string s (1≤|s|≤50) of commands. The string s
will consist only of characters ‘L’ (left), ‘R’ (right), ‘U’ (up) or ‘D’ (down).

Output

Output a single integer, which is the minimum number of operations necessary to fix the
command string so that the robot makes it to the exit.

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 4 of 14 5 November, 2016

Sample Input Sample Output
3 3

R..

.#.

..E

LRDD

1

2 4

R.#.

#..E

RRUUDDRRUUUU

0

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 5 of 14 5 November, 2016

Enclosure
In the Dark Forest, you control some trees. The territory you control is defined by the
smallest convex shape that contains all of the trees that you control. Your power is
defined by the area of this convex shape. You may control trees inside the convex shape
that are not on the edge of the shape.

You currently control k trees of the n in the forest. You want to extend your power by
gaining control over a single additional tree, somewhere in the forest. After acquiring
the single tree that most increases your power, what is the area of your new shape?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two space-separated integers n
and k (3≤k<n≤100,000), where n is the total number of trees, and k is the number of
trees that you control.

The next n lines each have two space-separated integers x and y (-109≤x,y≤109)
specifying the locations of the n trees. The first k trees in the list are the trees that you
control. No three trees will have collinear locations. Note that there may be trees that
you don’t control within your shape.

Output

Output a single floating point number, which is the largest area you can achieve by
controlling a single additional tree. Output this number to exactly one decimal place.

Sample Input Sample Output
5 3

-5 -5

-5 5

5 -5

-4 6

5 5

100.0

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 6 of 14 5 November, 2016

Illumination
Consider a square grid with lamps in fixed locations. Each lamp can either illuminate its
row or its column, but not both. The illumination of each lamp extends over a limited
distance.

Any square in the grid should only be illuminated by at most one lamp in its row and by
at most one lamp in its column (one of each is acceptable, as is just the row, just the
column, or neither). Determine if it is possible for all lamps to be lit while satisfying
these constraints.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains three positive integers, n, r and
k (1≤n,r,k≤1,000, k≤nxn), where n is the size of one side of the square grid, r is the
maximum reach of a lamp, and k is the number of lamps. The next k lines will each
contain two positive integers i and j (1≤i,j≤n), indicating that there is a lamp in the grid
at row i, column j.

Each lamp can illuminate squares at most r units away, and can also illuminate its own
square, so the maximum number of squares it can illuminate is 2r+1. All lamps will be in
distinct locations.

Output

Output a single integer, 1 if it is possible to light all of the lamps and 0 if it is not
possible.

Sample Input Sample Output
3 2 5

1 1

1 3

3 1

3 3

2 2

1

3 2 6

1 1

1 2

1 3

3 1

3 2

3 3

0

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 7 of 14 5 November, 2016

InTents
A circus is constructing their tent. The tent is a large piece of canvas held up by a given
number of various length tent poles. The tent poles go in specific places on the ground,
but which tent pole goes in which place is up to you. You need to choose a placement
for the given tent poles that maximizes the total volume under the tent.

There will always be one central pole at the origin; the other poles are distributed
around the periphery. The tent is always drawn tight between the central pole and two
adjacent poles on the periphery, forming a perfect triangle. Only the volume under
these triangles formed by two adjacent outer poles and the central origin pole counts
towards the total volume. Adjacency is by angle around the origin.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains an integer n (3≤n≤30), which is
the number of poles.

The next n-1 lines each contains two integers x and y (-1,000≤x,y≤1,000), representing a
2D coordinate, giving the locations where the poles may be placed. The locations may
not be in order around the origin. After that, there will be n lines, each containing a
single integer h (1≤h≤100). These are the heights of the poles.

One pole must be placed at the origin, and the rest must be placed at the (x,y)
coordinates in the input. The (x,y) locations will surround the origin; that is, the polygon
formed by the (x,y) locations, in order (by angle around the origin), will strictly include
the origin. No two holes will be at the same angle with the origin (i.e. no triangle of roof
fabric will have area 0).

Output

Output a single floating point number, which is the maximum volume achievable under
the tent. Output this number to exactly two decimal places, rounded.

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 8 of 14 5 November, 2016

Sample Input Sample Output
5

100 100

-200 -200

300 -300

-400 400

30

20

50

60

10

8566666.67

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 9 of 14 5 November, 2016

Islands
You are mapping a faraway planet using a satellite. The planet's surface can be modeled
as a grid. The satellite has captured an image of the surface. Each grid square is either
land (denoted as 'L'), water (denoted as 'W'), or covered by clouds (denoted as 'C').
Clouds mean that the surface could either be land or water; you cannot tell.

An island is a region of land where every grid cell in the island is connected to every
other by some path, and every leg of the path only goes up, down, left or right.

Given an image, determine the minimum number of islands that is consistent with the
given image.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two integers, r and c (1≤r,c≤50),
which are the number of rows and the number of columns of the image. The next r lines
will each contain exactly c characters, consisting only of ‘L’ (representing Land), ‘W’
(representing Water), and ‘C’ (representing Clouds).

Output

Output a single integer, which is the minimum number of islands possible.

Sample Input Sample Output
4 5

CCCCC

CCCCC

CCCCC

CCCCC

0

3 2

LW

CC

WL

1

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 10 of 14 5 November, 2016

Paint
You are painting a picket fence with n slats, numbered from 1 to n. There are k painters
willing to paint a specific portion of the fence. However, they don’t like each other, and
each painter will only paint their given portion of the fence if no other painter overlaps
their portion.

You want to select a subset of painters that do not conflict with each other, in order to
minimize the number of unpainted slats. For example, suppose there are 8 slats, and 3
painters. One painter wants to paint slats 13, one wants to paint 26, and one wants
to paint 58. By choosing the first and last painters, you can paint most of the slats,
leaving only a single slat (slat 4) unpainted, with no overlap between painters.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two integers n (1≤n≤1018) and k
(1≤k≤200,000), where n is the number of slats and k is the number of painters. Each of
the next k lines contains two integers a and b (1≤a≤b≤n), indicating that this painter
wants to paint all of the slats between a and b, inclusive.

Output

Output a single integer, which is the smallest number of slats that go unpainted with an
optimal selection of painters.

Sample Input Sample Output
8 3

1 3

2 6

5 8

1

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 11 of 14 5 November, 2016

Periodic Strings
Define a k-periodic string as follows:

A string s is k-periodic if the length of the string |s| is a multiple of k, and if you chop the
string up into |s|/k substrings of length k, then each of those substrings (except the
first) is the same as the previous substring, but with its last character moved to the
front.

For example, the following string is 3-periodic:

abccabbcaabc

The above string can break up into substrings abc, cab, bca, and abc, and each

substring (except the first) is a right-rotation of the previous substring (abccab
bca abc).

Given a string, determine the smallest k for which the string is k-periodic.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The single line of input contains a string s (1≤|s|≤100)
consisting only of lowercase letters.

Output

Output the integer k, which is the smallest k for which the input string is k-periodic.

Sample Input Sample Output
aaaaaaaa

1

abbaabbaabba

2

abcdef

6

abccabbcaabc

3

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 12 of 14 5 November, 2016

Water
A water company is trying to provide water from its pumping station to a mansion. The
company owns n water stations, numbered 1..n, which are connected by a variety of
pipes. Water can flow through both directions of a pipe, but the total amount of water
that can flow through the pipe is bounded by the capacity of the pipe.

The water company is constantly improving the pipes, increasing the capacity of various
pipes. The water company is conducting k improvements (each of which is permanent
after it is executed). An improvement consists of taking a pipe between two locations
and increasing its capacity by a fixed amount, or installing a pipe between two locations
which are not directly connected by a pipe.

After each improvement, the water company wants to know the maximum amount of
water the mansion could receive.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains three integers, n (2≤n≤100), p

(0≤p≤
n(n-1)

2
), and k (1≤k≤10,000), where n is the number of stations, p is the number of

initial pipes, and k is the number of improvements. The first station in the list is always
the pumping station, and the second is always the mansion.

The next p lines will describe the pipes in the initial setup. The lines will each contain
three integers, a, b (1≤a<b≤n) and c (1≤c≤1,000), which indicates that stations a and b
are connected by a pipe with capacity c. No (a,b) pair will appear more than once in this
section.

The next k lines will describe the improvements. The lines will each contain three
integers, a, b (1≤a<b≤n) and c (1≤c≤1,000), which indicates that the pipe connecting
stations a and b has its capacity increased by c (if there is currently no pipe between a
and b, then one is created with capacity c). Note that it is possible for an (a,b) pair to be
repeated in this section.

Output

Output k+1 integers, each on its own line, describing the maximum amount of water
that can reach the mansion. The first number is the amount of water reaching the
mansion in the initial configuration. The next k numbers are the amounts of water
reaching the mansion after each improvement.

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 13 of 14 5 November, 2016

Sample Input Sample Output
3 2 1

1 3 10

2 3 1

2 3 15

1

10

6 10 2

1 3 2

1 4 6

1 5 1

3 5 8

4 5 7

2 4 3

2 5 4

2 6 1

5 6 9

3 6 5

2 6 9

1 6 3

8

9

12

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 14 of 14 5 November, 2016

Zigzag
A sequence of integers is said to Zigzag if adjacent elements alternate between strictly
increasing and strictly decreasing. Note that the sequence may start by either increasing
or decreasing. Given a sequence of integers, determine the length of the longest
subsequence that Zigzags. For example, consider this sequence:

1 2 3 4 2

There are several Zigzagging subsequences of length 3:

1 3 2 1 4 2 2 3 2 2 4 2 3 4 2

But there are none of length greater than 3, so the answer is 3.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains an integer n (1≤n≤1,000,000)
which is the number of integers in the list. Each of the following n lines will have an
integer k (1≤k≤1,000,000)

Output

Output a single integer, which is the length of the longest Zigzagging subsequence of
the input list.

Sample Input Sample Output
5

1

2

3

4

2

3

6

1

1

1

1

1

1

1

