

2016 ACM ICPC

Southeast USA Regional

Programming Contest

Division 2
Barbells .. 1

Buggy Robot ... 2

As Easy As C-A-B ... 4

Gravity.. 6

Histogram ... 7

Islands .. 8

Project Panoptes ... 9

Periodic Strings ... 11

Mismatched Socks .. 12

It Takes Three ... 13

Zigzag ... 14

Hosted by:

College of Charleston

Florida Institute of Technology

Kennesaw State University

University of West Florida

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 1 of 14 5 November, 2016

Barbells
Your local gym has b bars and p plates for barbells. In order to prepare a weight for
lifting, you must choose a single bar, which has two sides. You then load each side with
a (possibly empty) set of plates. For safety reasons, the plates on each side must
balance; they must sum to the same weight. The combination of plates on either side
might be different, but the total weight on either side must be the same. What weights
are available for lifting?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two integers, b and p
(1≤b,p≤14), representing the number of bars and plates. Then, there are b lines each
containing a single integer x (1≤x≤108) which are the weights of the bars. After that,
there are p lines each containing a single integer y (1≤y≤108) which are the weights of
the plates.

Output

Output a sorted list of all possible lifting weights, one per line. There must be no
duplicates.

Sample Input Sample Output
2 5

100

110

5

5

1

4

6

100

110

112

120

122

130

Bar

Plates

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 2 of 14 5 November, 2016

Buggy Robot
There is a robot in a 2D grid. The grid consists of empty cells and obstacles, and there is
exactly one cell that is the exit. The robot will exit the grid if it ever reaches the exit cell.
Empty cells are denoted as '.', the robot's initial position is denoted as 'R', obstacles are
denoted as '#', and the exit is denoted as 'E'.

You can program the robot by sending it a series of commands. The series of commands
is a string consisting of characters: 'L' (move one square left), 'U' (move one square up),

'R' (move one square right), or 'D' (move one square down). If the robot would run into
an obstacle or off the edge of the grid, it will ignore the command (but it will continue
on to future commands, if there are any).

Your friend sent a series of commands to the robot, but unfortunately, the commands
do not necessarily take the robot to the exit.

You would like to fix the string so that the robot will reach the exit square (note once
the robot reaches the exit, it stops, even if there are more commands in the string). You
can fix the string with a sequence of operations. There are two operations: inserting a
command anywhere in the string, or deleting a command anywhere in the string. What
is the minimum number of operations you would need to fix the program?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two integers, r and c (2≤r,c≤50)
which are the number of rows and number of columns of the grid. The next r lines will
each contain a string with exactly c characters. Each character is one of ‘.’ (Empty), ‘R’
(the Robot), ‘#’ (an Obstacle), or ‘E’ (the Exit). This is the grid. There will be exactly one
‘R’ and one ‘E’ in the grid, and it will always be possible to navigate the robot to the

exit. The last line of input will contain a string s (1≤|s|≤50) of commands. The string s
will consist only of characters ‘L’ (left), ‘R’ (right), ‘U’ (up) or ‘D’ (down).

Output

Output a single integer, which is the minimum number of operations necessary to fix the
command string so that the robot makes it to the exit.

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 3 of 14 5 November, 2016

Sample Input Sample Output
3 3

R..

.#.

..E

LRDD

1

2 4

R.#.

#..E

RRUUDDRRUUUU

0

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 4 of 14 5 November, 2016

As Easy As C-A-B
We all know how to alphabetize a list when you know the order of the alphabet. But can
you find the order of the alphabet from an ordered list of words?

Consider the ordered list [cab, cda, ccc, badca]. It is clear that 'c' comes before 'b'
in the underlying alphabet because 'cab' comes before 'badca'. Similarly, we know 'a'
comes before 'd', because 'cab' < 'cda', 'a' comes before 'c' because 'cab' < 'ccc',

and 'd' comes before 'c' because 'cda' < 'ccc'. The only ordering of these four letters

that is possible is adcb.

Of course, it may not work out so well. If the word list is [abc, bca, cab, abc] there is
no alphabet that works. The list is inconsistent. If the word list is [dea, cfb] we don't

know about the relative positions of any of the letters other than ‘c’ and ‘d’. The list is
incomplete. Every list will fall into exactly one of the following three categories:

1. The list is correct if a single alphabet will yield the ordering

2. The list is incomplete if more than one alphabet will yield the ordering

3. The list is inconsistent if no alphabet will yield the ordering

Given a list of words, determine if the list is correct, incomplete or inconsistent, and if it
is correct, give the single underlying ordered alphabet.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains a lowercase letter last, and an
integer n (1≤n≤100). Each of the following n lines will have a string s (1≤|s|≤50)
consisting only of lowercase letters ‘a’-last.

Output

If the list is correct, and it is possible to uniquely determine the ordering of the letters
‘a’-last, output that ordering as a single string. If the list is incomplete, and there’s not

enough information to determine the positions of all the letters, output 0 (zero). If the
list is inconsistent in any way then output 1.

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 5 of 14 5 November, 2016

Sample Input Sample Output
d 4

cab

cda

ccc

badca

adcb

c 4

abc

bca

cab

abc

1

f 2

dea

cfb

0

b 3

a

bb

b

1

Note: the last case is inconsistent because there is no alphabet for which bb comes
before b.

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 6 of 14 5 November, 2016

Gravity
Consider a 2D grid, which contains apples, obstacles, and open spaces. Gravity will pull
the apples straight down, until they hit an obstacle, or the bottom of the grid, or
another apple which has already come to rest. Obstacles don’t move. Given such a grid,
determine where the apples eventually settle.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two integers, r and c
(1≤r,c≤100), which are the number of rows and the number of columns of the grid. On
each of the next r lines will be c characters: ‘o’ (lowercase ‘Oh’) for an apple, ‘#’ for an
obstacle, and ‘.’ for an open space.

Output

Output the grid, after the apples have fallen.

Sample Input Sample Output
3 3

ooo

#..

..#

o..

#.o

.o#

4 2

oo

oo

o.

..

..

o.

oo

oo

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 7 of 14 5 November, 2016

Histogram
A Histogram is a visual representation of data. It consists of bars, with the length of each
bar representing the magnitude of a data quantity. Given some data, produce a
Histogram.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains an integer n (1≤n≤100)
indicating the number of data items. On each of the next n lines will be a single integer k
(1≤k≤80), which is the data.

Output

Print a histogram, horizontally, using the ‘=’ character. Print each data item’s bar on its
own line, in the order given, with the number of ‘=’ equal to the data item k. Print no
spaces between the ‘=’.

Sample Input Sample Output
5

1

3

4

6

2

=

===

====

======

==

4

10

30

25

16

==========

==============================

=========================

================

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 8 of 14 5 November, 2016

Islands
You are mapping a faraway planet using a satellite. The planet's surface can be modeled
as a grid. The satellite has captured an image of the surface. Each grid square is either
land (denoted as 'L'), water (denoted as 'W'), or covered by clouds (denoted as 'C').
Clouds mean that the surface could either be land or water; you cannot tell.

An island is a region of land where every grid cell in the island is connected to every
other by some path, and every leg of the path only goes up, down, left or right.

Given an image, determine the minimum number of islands that is consistent with the
given image.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two integers, r and c (1≤r,c≤50),
which are the number of rows and the number of columns of the image. The next r lines
will each contain exactly c characters, consisting only of ‘L’ (representing Land), ‘W’
(representing Water), and ‘C’ (representing Clouds).

Output

Output a single integer, which is the minimum number of islands possible.

Sample Input Sample Output
4 5

CCCCC

CCCCC

CCCCC

CCCCC

0

3 2

LW

CC

WL

1

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 9 of 14 5 November, 2016

Project Panoptes
Project Panoptes (projectpanoptes.org) will attempt to use low-cost robotic telescopes
to collect data, in order to find exoplanets (planets outside of our solar system). For this
program you will implement a simple version of software to detect exoplanets from
readings from these telescopes.

The telescope will take daily readings of the brightness of a star. If the brightness of the
star decreases, a planet may be passing in front of it. If the brightness decreases
following a regular pattern, it is a candidate for having an exoplanet.

For example, consider the daily readings of a star's brightness below:

Day Brightness Day Brightness Day Brightness

1 20.6 6 22.2 11 10.8

2 21.0 7 4.8 12 22.9

3 23.2 8 25.9 13 30.4

4 12.0 9 13.0 14 8.6

5 17.5 10 12.2 15 24.9

The average of these readings is 18. If a reading is less than 80% of the average of all
readings, it is considered to have decreased, so readings below 14.4 are considered to
be potential planet sightings (and are highlighted here). The readings at days 4, 9, and
14 happen every fifth day (and thus has a period of 5) and may be because of an
exoplanet. Similarly, the readings for day 7 and 14 may indicate an exoplanet. Days 4, 7,
and 10 do not form a pattern because it would also have to include day 1 and day 13.
Only integer length periods should be considered.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two integers, n (2≤n≤1,000) and
p (1≤p≤n-1), where n is the number of observations, and p is the minimum period length
to consider. Each of the next n lines will contain a floating point number x
(0.0≤x≤100.0), which is the brightness for that day. The days will be in order.

Output

Output a single integer, indicating the smallest possible period of an exoplanet (must be
≥p), or -1 of there is none.

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 10 of 14 5 November, 2016

Sample Input Sample Output
15 2

20.6

21.0

23.2

12.0

17.5

22.2

4.8

25.9

13.0

12.2

10.8

22.9

30.4

8.6

24.9

5

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 11 of 14 5 November, 2016

Periodic Strings
Define a k-periodic string as follows:

A string s is k-periodic if the length of the string |s| is a multiple of k, and if you chop the
string up into |s|/k substrings of length k, then each of those substrings (except the
first) is the same as the previous substring, but with its last character moved to the
front.

For example, the following string is 3-periodic:

abccabbcaabc

The above string can break up into substrings abc, cab, bca, and abc, and each

substring (except the first) is a right-rotation of the previous substring (abccab
bca abc).

Given a string, determine the smallest k for which the string is k-periodic.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The single line of input contains a string s (1≤|s|≤100)
consisting only of lowercase letters.

Output

Output the integer k, which is the smallest k for which the input string is k-periodic.

Sample Input Sample Output
aaaaaaaa

1

abbaabbaabba

2

abcdef

6

abccabbcaabc

3

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 12 of 14 5 November, 2016

Mismatched Socks
Fred likes to wear mismatched socks. This sometimes means he has to plan ahead.
Suppose his sock drawer has one red, one blue, and two green socks. If he wears the
red with the blue, he's stuck with matching green socks. He put together two
mismatched pairs if he pairs red with green and then blue with green. Given the
contents of his sock drawer, how many pairs of mismatched socks can he put together?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains an integer n (1≤n≤1,000) which
is the number of colors of socks in Fred's drawer. Each of the next n lines has an integer
k (1≤k≤109) which is the number of socks of that color.

Output

Output a single integer indicating the number of pairs of mismatched socks that Fred
can make with the contents of his sock drawer.

Sample Input Sample Output
3

1

2

1

2

5

1

2

1

10

3

7

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 13 of 14 5 November, 2016

It Takes Three
Given three rectangles, determine if they can be glued together to form a square. The
rectangles can be rotated, but they cannot overlap.

Here’s an example of how three rectangles, 8x2, 1x6 and 7x6, can be put together to
form a square 8x8:

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. There will be exactly three lines of input.

The first line of input contains two integers w1 and h1 (1≤w1,h1≤100), which are the
width and height of the first rectangle.

The second line of input contains two integers w2 and h2 (1≤w2,h2≤100), which are the
width and height of the second rectangle.

The third line of input contains two integers w3 and h3 (1≤w3,h3≤100), which are the
width and height of the third rectangle.

Output

Output 1 if the two rectangles can be put together to form a square, and 0 of they
cannot.

Sample Input Sample Output
8 2

1 6

7 6

1

8x2

7x61x6

8

8

2016 ACM ICPC Southeast USA Regional Programming Contest

 Page 14 of 14 5 November, 2016

Zigzag
A sequence of integers is said to Zigzag if adjacent elements alternate between strictly
increasing and strictly decreasing. Note that the sequence may start by either increasing
or decreasing. Given a sequence of integers, determine the length of the longest
subsequence that Zigzags. For example, consider this sequence:

1 2 3 4 2

There are several Zigzagging subsequences of length 3:

1 3 2 1 4 2 2 3 2 2 4 2 3 4 2

But there are none of length greater than 3, so the answer is 3.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains an integer n (1≤n≤1,000,000)
which is the number of integers in the list. Each of the following n lines will have an
integer k (1≤k≤1,000,000)

Output

Output a single integer, which is the length of the longest Zigzagging subsequence of
the input list.

Sample Input Sample Output
5

1

2

3

4

2

3

6

1

1

1

1

1

1

1

