Base Sums

Given three values $\boldsymbol{n}, \boldsymbol{a}$, and \boldsymbol{b}, find the smallest $\boldsymbol{m}>\boldsymbol{n}$ such that the sum of the digits of \boldsymbol{m} in base \boldsymbol{a} is the same as the sum of digits of \boldsymbol{m} in base \boldsymbol{b}.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. There will be a single line of input, with three integers, $\boldsymbol{n}\left(\mathbf{0} \leq \boldsymbol{n} \leq 10^{16}\right)$, a and $\boldsymbol{b}(\mathbf{2} \leq \boldsymbol{a}<\boldsymbol{b} \leq 36)$, all of which will be in base 10

Output

Output a single integer, \boldsymbol{m}, which is the smallest number greater than \boldsymbol{n} such that the sum of its digits in base \boldsymbol{a} is the same as the sum of its digits in base \boldsymbol{b}. Output \boldsymbol{m} in base $\mathbf{1 0}$.

Sample Input Sample Output

661016	144
24415	90
93583851132	9437362

