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Problem 1
Cap and Trade

California Assembly Bill 32, which goes into effect on January 1, 2013, requires companies to reduce
carbon emissions or to pay a fee to offset greenhouse gases. (Technically, the latter is to purchase credits from
businesses that are not emitting their allotment of greenhouse gases.) The allotment goes down each year
until goal numbers are met. For those businesses that do not reduce emissions, annual costs would continue
to rise as the goals are lowered. All businesses, including colleges and universities, could be impacted,
depending on their sizes.

Implementing measures that reduce greenhouse gases can be expensive and take time to implement.
Colleges and universities that are large enough to be impacted by this bill have made estimates of what the
budget impact would be for next year if they do not reduce carbon emissions.

Swamp County College is one of the impacted colleges. It would like to explore what the costs would
be if distributed on a per-unit basis as a fee.

Your team is to write a program that takes assumptions about likely costs and anticipated enrollments
and reports the ranges of fee increases that would be needed to cover the assumed costs. The fee is to be
calculated by credit unit taken and by full-time equivalent student (FTE). The number of units per FTE
will vary by campus.

Input to your program will be one or more lines of text of up to eighty characters. Each line will have
the following information, separated by commas, with no leading white space:
• College or University identifier (string that does not contain a comma)
• Total number of anticipated enrolled units for a year for all anticipated enrollments (90 ≤ units ≤

1,000,000)
• Number of units considered a “full time” load (9 ≤ full-time load ≤ 18)
• Minimum annual assumed cost for emissions (integer dollars)
• Maximum annual assumed cost for emissions (integer dollars)

Output will consist of a single line for each college or university, in the same order as the input, formatted
beginning in the first column of the line as follows:
• College or University identifier, followed by a single space
• The string “Fees per Unit: ”
• The minimum cost per unit, rounded to the nearest dollar with a leading dollar sign, followed by a

hyphen (“-”), followed by the maximum cost per unit, rounded to the nearest dollar, with a leading
dollar sign

• A single space, followed by the string “Full Time: ”
• The minimum cost for a full-time student, rounded to the nearest dollar, with a leading dollar sign,

followed by a hyphen (“-”), followed by the maximum cost per unit, rounded to the nearest dollar, with
a leading dollar sign.

Rounding is to occur after the per-unit and per-FTE values are calculated.

Sample Input

SCC,90000,15,485000,967000

UCX,150000,15,1500000,6000000



Problem 1
Cap and Trade (continued)

Output for the Sample Input

SCC Fees per Unit: $5-$11 Full Time: $81-$161

UCX Fees per Unit: $10-$40 Full Time: $150-$600
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Problem 2
Component Testing

The engineers at ACM Corporation have just developed some new components. They plan to spend the

next two months thoroughly reviewing and testing these new components. The components are categorized

into several different classes, depending on their complexity and importance. Components in different classes

may require different number of reviewers, whereas components in the same class always require the same

number of reviewers.

There are also several different job titles at ACM Corp. Each engineer holds a single job title. All

engineers holding a given job title have the same limit on the number of components that they can review.

Note that an engineer can be assigned to review any collection of components and will be able to complete

the task, regardless of which classes the components belong to. An engineer may review some components of

the same class, and others from different classes, but an engineer cannot review the same component more

than once.

Can the engineers complete their goal and finish testing all components in two months? Your team is

to develop a program to answer this question.

There will be multiple test cases in the input. The first line of each test case contains two integers

n and m, separated by whitespace, where n is the number of component classes and m is the number of

engineer job titles. n and m will be in the range 1–10,000 inclusive. Each of the next n lines contains two

integers j and c indicating that there are j components in this class and that each component requires at

least c different reviewers. j is in the range 1–100,000 inclusive, c is in the range 0–100,000 inclusive. This

is followed by m lines, each containing two integers k and d separated by whitespace, indicating that there

are k engineers with this job title and that each engineer may be assigned to review at most d components.

k is in the range 1–100,000 inclusive, d is in the range 0–100,000 inclusive. Input will be terminated by the

end-of-file.

For each test case, print a single line containing “Yes” if it is possible for the engineers to finish testing

all of the components or “No” otherwise. No leading or trailing whitespace is to appear on an output line.

Sample Input

3 2

2 3

1 2

2 1

2 2

2 3

5 2

1 1

1 3

1 1

1 3

1 1

1 20

1 4



Problem 2
Component Testing (continued)

Output for the Sample Input

Yes

No
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Problem 3
BeepBeep

Swamp County College is running an engineering contest. Each competing team is given a bucket of
parts with which to design and build a mini robot that has to maneuver around a square game board.

Your team’s job is to determine the location of the robot when it stops at various grid point locations
on the board. The most promising items in the bucket appear to be three old WiFi enabled smart phones.
A quick check of the GPS reception in the contest location shows that GPS doesn’t work reliably. Sound
looks promising but the first tests are pretty disappointing: it doesn’t seem possible to synchronize the
clocks of the phones close enough, and even if you could, there seems to be an unpredictable delay between
commanding a beep and the beep being emitted.

Luckily you have access to the awesome ACM Digital Library, and quickly find a paper by Peng, Shen,
and Zhang that makes things clear. What the phones can do reliably is record sounds. These phones, like
most phones, take 44,100 samples per second. The key is to use the recorder to determine when the beep is
actually emitted rather than when it is commanded.

We can put two of the phones, P1 and P3, at known fixed locations and the third phone, P2, on the
robot. After determining the distances between phones P1 and P2 (P12) and phones P2 and P3 (P23)
we can intersect the distance circles to find the location of the robot. The equation of a circle of radius r

centered at (h, k) is:
(x − h)2 + (y − k)2 = r2

The robot moves around a board divided into 100 by 100 grid lines as shown in Figure 1. Reflective markers
are placed at the intersections of the grid lines. The robot stops on one of these markers after each move.

See Figure 2 for a time diagram of the sound events. Note that there is no vertical scale in Figure 2.

A beep is emitted from P1 and received by P1 at T 1, at P2 at T 2, and P3 at T 3. Some time after T 2,
P2 emits a beep that is received by P2 at T 4, at P3 at T 5, and P1 at T 6.

The known quantities are P13, the distance between the fixed phones, and the differences between the
events at each phone: I3 = (T 5− T 3), I2 = (T 4−T 2), and I1 = (T 6− T 1). We need to find P12 and P23.
We can see, for example, that I1 = I2 + twice the time it takes sound to go from P1 to P2.

The known fixed locations for P1 and P3 need to be at least a few samples away from the board grid
and located so as to make sure the distance circles always intersect in two points, only one of which is on
the board square.

We will label the grid lines 0–99, locate P1 at (−20,−20), and locate P3 at (−20, 119). We don’t know
the spacing of the grid lines but it is at least 5 cm and not greater than 10 cm. To determine the speed of
sound we will start the robot at (50, 50).

Your program is to read a series of lines terminated by end of file. Each line will have three integers
separated by whitespace. Each integer will be greater than zero and less than 100,000. The integers represent
the number of samples between the beeps at P1, P2, and P3 for each location of the robot.

For each line in the input print the location x and y coordinates to the nearest integer. The correct
answer to the first line will be

50 50

Print no spaces before the x coordinate, one space between x and y, and no spaces between y and a
newline. Print no sign on x or y.



Problem 3
BeepBeep (continued)

Sample Input

1297 13 391

1361 87 455

1374 110 478

1267 77 571

1600 36 1008

919 99 472

389 23 87

1008 64 100

1462 100 288

1727 27 920

1770 96 589

2202 20 992

Output for the Sample Input

50 50

49 50

49 49

60 25

99 0

40 0

0 0

0 50

25 75

99 35

58 83

99 99



(0,0)

(99,99)

P1:  (-20,-20)

P2:  (50,50)

P3:  (-20,119)

P1
3

P12

P23

P2

T1

P3

P1 T6

T2 T4

T3 T5

Figure 1.  Fixed phones and initial position of robot.

Figure 2.  Independent time lines showing times of beeps received at each phone.
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Problem 4
Fifty Coats of Gray

A contractor is planning to bid on interior painting for a series of modest housing projects. These
projects typically involve several homes or apartments that are all built using just a few floor plans, and
have basic drywall walls and ceilings, with no particular architectural features like crown molding or cathedral
ceilings. The contractor would like to find a quicker way to estimate how much paint it will take to paint
the walls and ceilings for each job.

A gallon of paint will cover 350 to 400 square feet if walls are plain, flat, and light-colored. It will cover
less if walls are textured or a dark color, which could require additional coats of paint.

The plan for these housing units is to paint the four walls and the ceiling. Of course, no paint is needed
for window and door openings. All walls, ceilings, windows, and doors are rectangular, and all walls are the
same height in any given room. All rooms will be painted the same color.

The contractor will provide you with information about the dimensions of the rooms, the windows and
doors for each floor plan, and the number of domiciles for each floor plan. Your team is to write a program
that will tell him how much paint he should include in his bid.

Input to your program will be a series of integer values on multiple lines representing one or more
floor plans. Values will be separated from each other by one or more spaces. The values will represent the
following:

• Number of domiciles with this floor plan (1–100 inclusive)
• Assumed square feet that a gallon of paint will cover in this floor plan (100–400 inclusive)
• Number of rooms in each domicile (1–9 inclusive)

For each room:
◦ Three integers, representing the height, length and width of the room in feet (h, w, l): height will

range from 8–20 feet; length and width will range from 3–50 feet
◦ The number of windows and doors in the room (1–9 inclusive)
◦ One or more pairs of values that represent the dimensions of windows and doors, in feet

The last floor plan will be followed by the end-of-file.

For each floor plan, your program is to print the integer number of gallon paint cans needed for the job.
The value is to be printed on a single line without leading or trailing whitespace.

Sample Input

50 350 3

8 10 8 2 6 3 3 3

8 10 8 2 6 3 3 3

8 20 8 3 6 3 5 3 5 3

20 400 2

8 16 12 2 7 3 3 5

8 7 5 2 7 3 2 3

Output for the Sample Input

178

41
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Problem 5
Shift Differential

For hourly employees in union shops, there are various things that can adjust pay. One of these is
called “Shift Differential.” Shift differential is a cash add-on to an hourly rate to compensate an employee
for working outside of standard business hours. Usually there are two categories: one for the evening or
“swing” shift and one for the overnight or “graveyard” shift. Swing and graveyard shift hours and the rules
for payment are defined in the collective bargaining agreement.

Example: Assume a base hourly rate of $15/hour.
Swing Shift Differential: $1.25 Swing Shift Hourly Rate: $16.25
Graveyard Shift Differential: $2.00 Graveyard Shift Hourly Rate: $17.00

Your team is working for a company that pays shift differential. They would like you to calculate the
shift differential pay owed to their hourly employees.

Rules for the company’s collective bargaining agreements:
1. Specific times of day are defined as “swing” and “graveyard” periods. The graveyard period starts when

the swing period ends. These periods are defined as contiguous four to eight hour blocks defined by
start and end times.

2. Employees are assigned to regularly scheduled eight-hour base shifts. The base shift times may include
hours in the swing and/or graveyard periods.

3. An employee is defined as regularly working graveyard shift if at least four hours of his/her base shift
fall in the graveyard period. This is true even if the other four hours fall in the swing period.

4. An employee is defined as regularly working swing shift if at least four hours of his/her base shift fall
in the swing period, unless the employee is in the graveyard shift category.

5. An employee that is not defined as regularly working swing or graveyard shifts is defined as regularly
working day shift.

6. An employee may be assigned to different work hours on any given day, and those hours may span more
than one shift period.

7. An employee who regularly works graveyard shift will receive the graveyard shift differential for all hours
worked.

8. An employee who regularly works swing shift will receive the swing shift differential for all hours worked,
except for any hours that fall in the graveyard period. The employee will receive the graveyard shift
differential for those hours.

9. An employee who regularly works day shift will receive shift differential for any hours worked during
the defined swing or graveyard periods.

10. If overtime (work for more than eight hours) occurs during hours when a person is receiving shift
differential, the shift differential is paid at the overtime rate. Time worked from eight up to twelve
hours in a shift is paid at 1.5 times the usual rate (“time-and-a-half”). Time above twelve hours is paid
at double the usual rate. No employee will work more than sixteen consecutive hours on a given day.

Shift differential is often paid as a separate check after the work is completed and time reported. The
company you are working for follows this practice.

Your team is to write a program that calculates the weekly shift differential payments owed to a group
of hourly employees based on a given collective bargaining agreement. Each employee will work five days
during the week.



Problem 5
Shift Differential (continued)

Input to your program is as follows:

• The first line defines the swing and graveyard period parameters. The fields are: Swing Shift Start Time
(HH:MM), Swing Shift End Time (HH:MM), Graveyard Shift End Time (HH:MM), Swing Shift Differ-
ential Pay (dollars and cents), and Graveyard Shift Differential Pay (dollars and cents), all separated
by commas.

• Second line: Employee ID (string of up to forty non-comma characters), employee base shift start time
(HH:MM), employee base shift end time (HH:MM), all separated by commas.

• Next five lines: Work Date (YYYYMMDD), Actual Start Time (HH:MM), and Actual End Time
(HH:MM), all separated by commas.

Eighth and subsequent lines will repeat lines 2–7.

All input will start at the beginning of the line and there will be no whitespace except possibly embedded
in employee IDs. Input is terminated by end-of-file.

Output will be a list, one per line, of the employee IDs who are owed shift differential, a single space,
and the amount of the differential owed. The amount owed is to be printed in dollars and cents, rounded
to the nearest cent. It is guaranteed that at least one person will be owed shift differential. No leading or
trailing whitespace is to appear on an output line.

Times are given using a twenty-four hour clock. Midnight will be shown as 00:00. You do not need to
be concerned about handling transitions to and from Daylight Savings Time.

Sample Input

18:00,00:00,06:00,1.25,2.00

Wendell Bipken,08:00,16:00

20120109,08:00,16:00

20120110,08:00,16:00

20120111,08:00,18:00

20120112,08:00,18:00

20120113,08:00,19:00

Breanna Shock,08:00,16:00

20120109,12:00,20:00

20120110,10:00,18:00

20120111,10:00,18:00

20120112,08:00,16:00

20120113,11:00,19:00

Theodora Reeghbuckle,18:00,02:00

20120109,18:00,02:00

20120110,18:00,02:00

20120111,18:00,02:00

20120112,16:00,02:00

20120113,18:00,04:00

Output for the Sample Input

Wendell Bipken 1.88

Breanna Shock 3.75

Theodora Reeghbuckle 68.00
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Problem 6
The Perks of Planning Ahead

Having just downloaded the latest multi-player RPG, “SkyFall Ex—The Creed of the Guild,” a group

of gamers are trying to plan how to maximize their character development over the course of the game.

Game characters advance by acquiring “perks.” One perk is earned for every three levels the character

earns, and the maximum number of levels is capped, so only a limited number of perks can be acquired. By

reading the manual and early reviews of the game, the players have come up with a score for how desirable

they believe each perk will be in the final stages of the game.

However, players can’t simply grab the most valuable perks. The more advanced perks can only be

taken if a game character qualifies by way of having earlier chosen certain prerequisite perks. For example,

the perk “Sharpshooter 2” can only be taken after having selected “Sharpshooter 1,” and the perk “Master

Trader” can only be selected if the character already has “Merchant 2” and “Diplomat 1.” Your team is to

write a program to select the most valuable set of perks that can be acquired in the game world.

Input will contain multiple data sets. Each data set begins with a line containing a positive integer P ,

the maximum number of perks that a player can acquire. A zero value for this indicates the end of the input.

The second line of the data set contains from one to twenty-six integers in the range 1–100 separated

by one or more spaces, giving the estimated value of the perks. Perks are identified by single upper-case

alphabetic characters. The first integer in this line is the value of perk A, the second is the value of perk B,

and so on.

This is followed by zero to twenty-six lines identifying the requirements for taking a perk. Each line will

contain two or more uppercase alphabetic characters, separated by one or more spaces. The first character

indicates the perk being described. The remaining characters indicate perks that must already belong to the

character before this perk can be taken. For example, the line

B A C

would specify that perk B can be taken only if a character already has both perk A and perk C. Perks will

not have mutual prerequisites: in this example, neither perk A nor perk C will require perk B. The end of

the series of requirements, and of the data set, is indicated by a line containing only a period.

For each data set, your program is to print a single line containing the identifiers of the perks making

up the most valuable attainable set. These are to be printed in ascending alphabetical order with no leading,

intervening, or trailing whitespace.

If there is a tie among multiple sets for most value, print the one whose output line would come earliest

in an alphabetical ordering.



Problem 6
The Perks of Planning Ahead (continued)

Sample Input

3

10 10 90 30 75 30

B A

C B

E D A

F D E

.

2

100 45 60 50 5

A C D

D C

B E

.

0

Output for the Sample Input

ADE

CD
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Problem 7
Loadmaster

(This problem uses an interactive server.)

After a disaster, a rapid response is often necessary to airlift relief supplies into the affected area. The
American Catastrophe Management Corporation has developed a set of cargo containers that fit into the
seats of passenger aircraft. Each of these containers can be loaded onto and/or relocated within a plane in
one minute. There are many fine programs that calculate cargo configurations when all the cargo weights
are known prior to loading. Your team is to write a program that loads a specified aircraft as truckloads of
containers arrive.

An airplane has two important loading limits: weight and balance. The takeoff weight (plane + fuel +
cargo), or TOW, cannot exceed the airplane’s specified maximum takeoff weight, or MTOW. In the interest
of loading speed, your program will be given a threshold minimum takeoff weight, expressed as a percentage
of MTOW, that should be achieved before considering the plane sufficiently loaded. Weights are specified
as a whole number of pounds.

If the balance (center of gravity, or CG) of a plane falls outside a specified range along the longitudinal
axis, the plane becomes aerodynamically unstable. The lateral CG of a traditional passenger plane is not a
concern because the seats are close to the longitudinal axis; any side-to-side imbalance is corrected by trim
adjustments. The minimum and maximum CG points are expressed as inches from the datum. The datum
is an arbitrary point along the longitudinal axis. See Figure 1. Often, the datum is a point in front of the
aircraft so that CG computations don’t involve negative numbers. The longitudinal CG of an airplane is
determined from Equation 1:

CG =
TotalMoment

TotalWeight
(1)

where a Moment, M , is computed as M = Arm × Weight. Arm is the distance from the datum, in inches,
and Weight is in whole-number pounds. For example, Table 1 shows the center of gravity for a fueled plane
with cargo weights A, B, C, and D at their respective arms. Note that the fueled plane is expressed as a
weight with its arm at the CG of the unloaded plane.

Item Weight Arm Moment CG
(MTOW = 2200) (+35 to +44)

Airplane 1340 37 49580
A 352 35 12320
B 212 72 15264
C 240 48 11520
D 50 92 4600
Total 2192 93284 42.5

Table 1. Sample loading and CG computation.

Your program must produce a safely loaded plane (TOW ≤ MTOW and minCG ≤ CG ≤ maxCG)
when one or more of the Ready Conditions specified below are met:

a. TOW ≥ threshold/100.0× MTOW
b. all seats are loaded with containers
c. no additional trucks arrive after Dmax minutes of having nothing to load (the need for relief exceeds

the desire for efficient loading)
d. loading the lightest remaining unloaded cargo container would push TOW > MTOW.



Problem 7
Loadmaster (continued)

Program Interaction

Your program must converse with a server, issuing commands to standard output and receiving responses
from standard input. Your program starts the conversation by querying the airplane configuration. After
receiving the configuration from the server, your program then repeatedly reads a timed event and responds
to it. The first command is “C”, a single character followed by end-of-line. The server replies with the
airplane configuration:

MTOW Wfueled Afueled

threshold Dmax

minCG maxCG P
a1

. . .
aP

The first configuration line contains MTOW, Wfueled, and Afueled, separated by whitespace. MTOW is
the maximum takeoff weight, Wfueled is the weight of the fueled plane (plane + fuel), and Afueled is the
moment arm of the fueled plane. The second line contains threshold and Dmax, where threshold is the
integer percentage of MTOW for minimum loading. Dmax is the maximum idle delay to wait before deciding
that no more cargo is arriving. Once your program decides not to load any further containers, Dmax is the
maximum number of minutes allowed to reshuffle the contents within the plane to achieve balance. The third
line contains minCG and maxCG, the minimum and maximum center of gravity arms (in inches) and P, the
number of passenger seats in the airplane. Following the third line are P additional lines, each specifying
the loading arm of each seat, expressed as whole-number inches from the datum. Implicit in the order of the
seat arms is the seat number.

After the configuration, your program reads an event from the server. An event is of the form

t [C
w1

...
wC ]

where t is the current step time in minutes. If a truck arrives, C will be present, followed by w1 through
wC weights, expressed as whole-number pounds. Implicit in the ordering of the cargo weights is the cargo
container number. Each truck starts again with its own items 1–C.



Problem 7
Loadmaster (still continued)

Your program responds to an event with one of the following commands.

Command String Discussion
L ci pj Load cargo item i into seat position j.
M pi pj L cm pn Move cargo from seat pi to seat pj before loading cargo item cm into seat pn.
M pi pj Move cargo from seat pi to seat pj . In the interest of loading speed, your program

can perform a move without load only when the current truck was emptied and no
additional truck has arrived yet.

I Idle. Do nothing.
A pi pj Cease loading items onto the plane, but make final adjustments. The Adjust command

is almost the same as Move, but Adjust prevents the server from forcing Loads or
MoveLoads while unloaded cargo items remain. Because no cargo items are being
loaded, your program may move a cargo container to and from the aisle (position 0)
to perform swaps. Once the A command is issued, your program may issue only the A
or R commands.

R Ready. At least one of the Ready Conditions specified above has been met.

It is very important that your program flush standard output after issuing a command to the server.
e.g.

C fputs("C\n",stdout); fflush(stdout);

C++ cout << "C\n" << flush;

Java System.out.println("C"); System.out.flush();

Some important considerations:
• Only one plane can be loaded at a time (different planes require separate execution runs).
• Containers can only be loaded from one truck at a time.
• The number of passenger seats on an airplane varies from 4 to 853.
• The maximum number of cargo containers in a truckload is 100.
• Once a container is loaded, it cannot be unloaded to achieve safe weight or balance.
• Although some planes carry passengers on more than one level, the vertical relationship of seats to the

datum is ignored, and thus not specified.
• It will always be possible to achieve one or more of the Ready Conditions.

Figure 1. Diagram showing Datum and Center of Gravity parameters.



Problem 7
Loadmaster (still continued)

Sample Transcript

A sample transcript follows. Client commands are offset for clarity. The comments to the right of the
transcript must not appear in your client commands and will not occur in the server responses; they are for
description only.

Server Client Comments
C (Query configuration)

2200 1340 37 (MTOW Wfueled Afueled)
90 3 (threshold percentage and Dmax)
35.0 44.0 4 (minCG maxCG and P = 4 passenger seats)
35 (a1 = 35.0 inches)
72 (a2)
48 (a3)
92 (a4. This is the end of the configuration.)
1 2 (The first event will always be a truck arrival at t = 1.)
240 (w1 = 240 pounds)
50 (w2)

L 1 1 (program loads cargo item 1 (240 lbs.) to seat position 1 at 35 inches)
2 (event at time = 2, no truck can arrive while unloaded containers remain)

L 2 3 (cargo item 2 (50 lbs.) to seat position 3 at 48 inches)
3 (event at time = 3, nothing to load, waiting for a truck)

I (do nothing while waiting)
4 (event at time = 4, nothing to load, still waiting for a truck)

I

5 2 (at time = 5, another truck arrives with two containers)
352 (w1 = 352 pounds)
212 (w2)

M 3 2 L 1 3 (move cargo from seat 3 to 2, load cargo item 1 (352 lbs.) to seat 3)
6

M 2 4 L 2 2 (move cargo from seat 2 to 4, load cargo item 2 (212 lbs.) to seat 2)
7 1 (at time = 7, another truck arrives with one container)
500 (w1 = 500 pounds)

R (at least one Ready Condition satisfied)

Judged Responses

An ill-formed command produces a PRESENTATION ERROR. If the server has to wait longer than one
second (real time) for your client to issue a command, the judged response is TIME LIMIT EXCEEDED.
Any other problem with your client will result in a response of WRONG ANSWER.



Problem 7
Loadmaster (still continued)

Hints for Testing

You may construct a series of simulated events manually. Execute your client program with you, the
programmer, acting as the server. Let standard input come from your command line environment. Supply
correct responses to you program, keeping track of cargo containers and where they are loaded.

The server process used by the judges is available to the contestants. You may use the server in two
ways. In the absence of a working client program, you, the programmer, can act as the client, typing input
to the server. Use the following command:

test7 configurationFile transcriptFile

To test your program and its conversation with the server, use the command:
test7 configurationFile transcriptFile sourceFile

where:
• configurationFile is described below
• transcriptFile is a file that captures the server’s inputs and outputs for later analysis. The server’s

inputs are your client’s commands. Client commands are offset by two tab characters to distinguish the
client vs. server dialog.

• sourceFile is the source code to your client. When specified, the test7 script will call the compile script
before executing your program.

You can produce a simulation to the server by supplying a configuration file in the following format:
The first three lines contain whitespace separated fields: line one contains MTOW, Wfueled, and Afueled;

line two contains threshold and Dmax; and line three contains minCG, maxCG, and P.
The following P lines contain moment arm locations, expressed as whole number inches, for each of the

P seats. The first 3 + P lines are exactly the information presented in response to a configuration query.

Following the airplane configuration information are truck arrival events of the form:
ta C
w1

. . .
wC

where ta is the arrival time in minutes of a truck at the head of the line for loading. The first arrival
event must be at ta = 1. C is always ≥ 1. C lines follow with one cargo weight per line. Subsequent
arrival events must obey the condition ta+1 ≥ ta + C. The configuration for the above transcript is in the
file sample7.in, and is repeated here. The comments to the right of the configuration file entries must not
appear in the actual file; they are here for information only.

2200 1340 37 (MTOW Wfueled Afueled)
90 3 (thresholdPercentage and Dmax)
35.0 44.0 4 (minCG maxCG and P = 4 passenger seats)
35 (a1 = 35.0 inches)
72 (a2)
48 (a3)
92 (a4)
1 2 (at time = 1, a truck arrives with two containers, w1 = 240, w2 = 50)
240

50

5 2 (at time = 5, another truck arrives with two containers, w1 = 352, w2 = 212)
352

212

7 1 (at time = 7, another truck arrives with one container, w1 = 500)
500
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Problem 8
Hypotenuse Numbers

The Pythagorean theorem states that the square of the length of the hypotenuse of a right triangle is

equal to the sum of the squares of the other two legs of the triangle. This can be represented by the equation:

Z2 = X2 + Y 2

where Z is the length of the hypotenuse of the triangle and X and Y are the lengths of the other legs. If we

restrict X , Y , and Z to be integers greater than zero, which numbers can be the length of a hypotenuse of

a right triangle?

A famous result from number theory states that an integer can be the length of a hypotenuse of a right

triangle if and only if it has at least one prime factor of the form 4k + 1, where k is an integer greater than

zero. Your team is to write a program that will test integers to determine if they are possible hypotenuse

lengths.

Your program is to read a series of lines terminated by end of file. Each line will consist of an integer

Z, 0 < Z ≤ 2,147,483,647.

For each line in the input your program is to print a line containing the input number, a single space,

and either “yes” if the number can be a hypotenuse or “no” if it cannot be. No whitespace is to appear

before the number or between the answer and the newline.

Sample Input

5

6

7

10

2147483647

2147483645

2147483642

2147483627

1927738275

1927738291

Output for the Sample Input

5 yes

6 no

7 no

10 yes

2147483647 no

2147483645 yes

2147483642 no

2147483627 yes

1927738275 yes

1927738291 no
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Problem 9
Destination North America

Twenty-one slots at the ICPC World Finals are reserved for North American teams. Currently, each
of the eleven regions is guaranteed that its winner will advance to the World Finals; the other slots are
allocated by ICPC Headquarters. Generally, advancing a second or third team is based on fuzzy logic that
includes things like the number of teams participating from a region and/or regional growth.

The 2011/2012 North American World Finals Teams participated in an Invitational contest prior to the
World Finals. The problem set for this contest was more World Finals-like in difficulty than typical regional
contests. (A link to the problem set is on the Regional Facebook page.) The group who organized this has
proposed replacing the current allocation methodology with a new process, as follows:

The top five ranked schools from each region would be invited to send a team to the North American
Semi-Finals contest—a total of 55 teams. This would be a multi-day event that includes speakers and
activities, similar to but shorter than the World Finals.

The winners of the Semi-Finals would advance to the World Finals as follows:
• The top-ranked school from each region would advance.
• The remaining slots would awarded based on placement at the Semi-Finals, irrespective of region.

The goal of this proposal is to create a Semi-Finals that is a destination in and of itself; and, advances
stronger North American teams to the World Finals.

The implications of this proposal include the following:
• The team that wins a Regional may not advance to the World Finals (assuming it places lower at

the Semi-Finals than another team from its region).
• A single region may send five teams to the World Finals (if they all rank high enough overall).
• The 51st-ranked team may go to the World Finals (if the teams from its region rank 51st–55th at

the Semi-Finals).

Your team is to write a program that takes as input the ranking of 55 teams at the Semi-Finals and
produces as output a list of the 21 teams that would be invited to the World Finals if this process were in
place.

Input to your program will consist of one or more sets of data. Each data set represents the results of a
semi-final contest in rank order. Each data set consists of a contest identifier, followed by a comma, followed
by 55 team identifiers separated by commas. Team identifiers consist of a single alphabetic character regional
identifier, a hyphen, and a team name that may include white space. No team identifier will span more than
one line, although the input for a given contest data set will span multiple lines. Lines will not exceed 80
characters and will always break at a comma. A new data set always begins on a new line.

For each input set, your program is to print the contest identifier on a line, followed by the 21 team
identifiers of the advancing teams, one per line, in the same order as the teams appear in the input list. No
leading or trailing whitespace is to appear on an output line.

NOTES:
1. ACM-ICPC has determined that this proposal could not be implemented without a restructuring of the

North American region. This means that, if it or something similar is implemented, it will take several
years to complete.

2. The sponsoring entity is going to try to continue to hold the Invitational.



Problem 9
Destination North America (continued)

Sample Input

2011-2012,A-team 1,A-team 2,A-team 3,A-team 4,A-team 5,B-team 1,B-team 2,

B-team 3,B-team 4,B-team 5,C-team 1,C-team 2,C-team 3,C-team 4,

C-team 5,D-team 1,D-team 2,D-team 3,D-team 4,D-team 5,E-team 1,

E-team 2,E-team 3,E-team 4,E-team 5,F-team 1,F-team 2,F-team 3,F-team 4,

F-team 5,G-team 1,G-team 2,G-team 3,G-team 4,G-team 5,H-team 1,H-team 2,

H-team 3,H-team 4,H-team 5,J-team 1,J-team 2,J-team 3,J-team 4,

J-team 5,K-team 1,K-team 2,K-team 3,K-team 4,K-team 5,L-team 1,

L-team 2,L-team 3,L-team 4,L-team 5

Output for the Sample Input

2011-2012

A-team 1

A-team 2

A-team 3

A-team 4

A-team 5

B-team 1

B-team 2

B-team 3

B-team 4

B-team 5

C-team 1

C-team 2

C-team 3

D-team 1

E-team 1

F-team 1

G-team 1

H-team 1

J-team 1

K-team 1

L-team 1
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Problem 10
Work Excess

Many government employees are paid “once a month.”

Months do not have the same number of work days, and a given month may have a different number of
work days from year to year. It is typical for an agency to assign monthly pay periods that do not necessarily
align with the start and end dates of calendar months. This usually results in pay periods with 21 or 22
work days, based on working Monday through Friday.

Some employees have work weeks that do not span Monday to Friday (e.g., medical personnel, law
enforcement, computer operations, and facilities personnel). These employees may work more or fewer days
in any given pay period than those on the standard work week. At a minimum of once a year, the work
excess/work deficit days are reconciled, and employees are either compensated or required to “pay back”
time. As can be seen in Table 1 below, a work excess for a pay period is shown as a positive number of days,
and a work deficit is shown as a negative number of days.

Table 1. Table showing work excess/deficit examples for three pay periods.

You work for such a government agency. They would like your team to develop a program that will
produce the work excess for all work schedules in a list of monthly pay periods. Each pay period is named
for the month that the majority of the pay period falls in.

Input to your program will be a series of lines representing single pay periods. Each line will contain the
start and end dates for a pay period (YYYYMMDD), and the day of the week of the start date represented
as a number: 1 = Sunday, 2 = Monday, . . ., 7 = Saturday. Years will range from 1980 through 2040. Values
will be separated from each other by commas. Pay periods do not span calendar years.

For each pay period, your program is to print a line that contains:
• the name of the pay period month followed by a space,
• followed by the four-digit year followed by a space,
• followed by seven numbers, separated by commas without embedded whitespace. The first of the seven

numbers is to be the number of working days in the pay period for Monday through Friday schedules.
The next six numbers will be the work excess/work deficit total for the other six schedules, in the order
shown in the example above. Plus and minus signs are to be printed only to indicate a non-zero excess
or deficit, respectively.

No leading or trailing whitespace is to appear on an output line.



Problem 10
Work Excess (continued)

Sample Input

20060101,20060130,1

20060301,20060330,4

Output for the Sample Input

January 2006 21,+1,-1,0,+1,+1,+1

March 2006 22,0,0,0,-1,-2,-1


