
2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 1
Dim Weights

Parcel delivery companies generally determine the charge for delivering a parcel based on weight. How-
ever, weight is not the only factor that determines what the costs are to handle a given parcel. Space on
transport and delivery vehicles is limited. If a parcel is large but light charging only by weight will not
accurately reflect the total costs of handling that parcel.

To address this problem, delivery companies calculate a “dim” (for “dimensional”) weight. This is
determined by taking the total volume of a parcel (length by width by height, in inches) and dividing it by a
stated factor to get a value in “pounds,” taking any fractional part as the next whole pound. (For example,
a result of 3.01 will be treated as 4.) The result is the “dim weight.” The charge to ship a parcel is based on
the effective weight—the greater of the actual weight or the “dim weight.” The “dim weight” divisor varies
between delivery companies. Additionally, some delivery companies only apply the “dim weight” to parcels
that exceed a certain volume.

Your team is to write a program that will read the three dimensions of rectangular parcels and determine
which delivery company has the most favorable treatment for each parcel.

Input to your program will consist of two parts. The first part begins with a line containing the number
of delivery companies to be compared, as an integer c beginning in the first column. The next c lines contain
the following information about each delivery company:
• the name of the company, as a string of one to twenty alphanumeric characters,
• the minimum parcel volume that the “dim weight” applies to in cubic inches, as an integer between 1
and 9,000 inclusive, and

• the “dim weight” divisor, an integer in the range 10 to 999 inclusive.
Fields on these lines are separated by one or more spaces.

The remainder of the input consists of parcel descriptions, one per line. Each parcel description contains
the length, width, and height of the parcel in inches (as an integer in the range 1 to 72 inclusive), followed
by the weight in pounds (as an integer in the range 1 to 70 inclusive). Values are separated from each other
by one or more spaces. This input is terminated by end-of-file. No input line will exceed 80 characters.

For each parcel, your program is to determine which company will treat the package as having the
lightest weight. Print a line containing the name of the company, a single space, and the effective weight as
an integer. No leading or trailing whitespace is to appear on an output line.

Should more than one company offer the same lightest effective weight, your program is to select the
company that appears first in the company list.

Sample Input

4

USEX 1 166

DPS 1 166

Post 1728 192

Local 1 240

8 8 8 3

6 6 6 3

13 9 2 1

13 13 15 5



Problem 1
Dim Weights (continued)

Output for the Sample Input

Post 3

USEX 3

Post 1

Local 11



2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 2
Great Thief

Once upon a time, there was a great thief who used the code name FWX. He lived in a two-dimensional
world named Flat Land. In this land, houses are built only on the grid locations having integer coordinates,
e.g., for a square Flat Land with a highest coordinate of n, there can be houses only at (0, 0), (0, 1), . . ., (0, n),
(1, 0), (1, 1), . . ., (1, n), (2, 0), (2, 1), . . ., (2, n), . . ., (n, 0), (n, 1), . . ., (n, n). There are only non-negative
coordinates in Flat Land.

FWX liked the time between 4 AM to 5 AM for his work when all the inhabitants were sound asleep.
In some houses, he slipped and fell with all the things he took in his bag, making a loud sound and knocking
himself out. All the inhabitants of the house were awakened and they called the police.

FWX was a great thief, so no jail could keep him for a long time. He broke out of jail and thought
about why he was caught only in some particular houses. Then he discovered that there is a guard in the
house at (0, 0) who can shoot slippery material in a straight line from (0, 0) which hits only the first house
on that line and makes that house slippery. When the guard fires, say, along the line x = y, it makes the
house at (1, 1) slippery, but houses at (2, 2), (3, 3), etc. are not affected. Similarly, along the line 2y = 5x,
(2, 5) becomes slippery but not (4, 10). The guard has an unlimited supply of slippery material and fires in
any direction he wishes as often as he likes. See Figure 1.

Your team is to write a program that will find the number of houses which are not safe for the great
thief FWX, assuming that the guard has shot slippery material on every possible line. Remember, (0, 0) is
not safe because of the guard.

Input to your program will be a series of test cases, one per line, terminated by end of file. There will
be at most 1000 test cases. A test case is a single integer n, 1 ≤ n ≤ 1,000,000 which specifies that the Flat
Land for this case is a square with the highest coordinate of n.

For each case, print a line containing the number of unsafe houses in that Flat Land on a separate line
with no extra spaces or leading zeroes.

Figure 1. Example Square Flat Land with n = 16.



Problem 2
Great Thief (continued)

Sample Input

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1000000

Output for the Sample Input

4

6

10

14

22

26

38

46

58

66

86

94

118

130

146

162

607927104786



2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 3
What’s a Cubit?

In ancient Egyptian and Biblical times, length measurements were based on the human body: a digit
was the width of a finger, four digits made a palm, and seven palms made a cubit (presumably the length of
an outstretched forearm from the elbow to the middle finger).

Egyptian cubit rods have been found, with lengths of 523.5 to 529.2 mm (20.61 to 20.83 inches). These
were apparently standardized “royal” cubits. The rods are divided into palms, with the palms subdivided
into digits.

Using the mean length of the cubit as 526.35 mm, your team is to write a program that will take ancient
dimensions in cubits, palms, and digits, and print the results both in meters and in U. S. feet and inches. A
U. S. inch is defined as 25.4 mm, with twelve inches to the foot.

Input to your program will be a series of lines. Each line will contain an ancient measurement specified
as integers followed by units, of the form “a cubits b palms c digits”. If the value for the number of cubits,
palms, or digits is zero, it will be omitted in the input. If the value is one, the unit will be specified in the
singular. Fields on an input line are separated by one or more spaces. No input line will exceed 80 columns.
Lengths will be greater than zero and less than 1,000 cubits.

For each input line, your program is to print the length in meters (rounded to three digits after the
decimal point) followed by the letter ’m’. This is to be followed by a single space and the length in feet and
inches. If the length is less than one foot print only the inches; otherwise, print the number of feet as an
integer immediately followed by a single quote and a space. The number of inches are then to be printed
with two digits after the decimal point (rounded), and immediately followed by a double quote. No leading
or trailing whitespace is to appear on an output line.

Sample Input

300 cubits

2 cubits 1 palm 2 digits

3 palms 3 digits

1 cubit 2 digits

Output for the Sample Input

157.905m 518’ 0.73"

1.165m 3’ 9.89"

0.282m 11.10"

0.564m 1’ 10.20"





2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 4
Robot Scarecrow

A farm deployed a robot as a moving scarecrow for its corn field. The robot moves along a loop pathway
that surrounds the corn field. On the pathway there are a number of unmanned command posts, numbered
sequentially starting from 1.

Every day the robot starts at post number 1 and moves in the direction of post number 2. Then, for
the whole day, every time the robot reaches a command post it receives a command, which can be “continue
to the next command post”, “report and remain at this command post”, or “turn back and return to the
previous command post”.

Your team is to write a program that will, given the list of commands received by the robot during the
day, determine how many times the robot was at a specified command post.

The first line contains three integers N , C and P indicating respectively the number of posts (2 ≤ N ≤

103), the number of commands (1 ≤ C ≤ 105) and a specific command post (1 ≤ P ≤ N). Values on this
line are separated from each other by one or more spaces. The remaining input consists of C lines, with
each line containing a number representing a command: 1 for the command “continue to the next command
post”, 0 for “report and remain at this command post”, or −1 for the command “turn back and return to
the previous post”. The robot starts at post number 1, turned in the direction of post number 2, and the
first command value is always 1, so the robot’s first movement is always from post 1 to post 2. A “continue
to the next command post” command at post N causes the robot to move to post 1; a “turn back and
return to the previous post” command at post 1 causes the robot to move to post N . No leading or trailing
whitespace will appear on an input line.

Output a line containing one integer, the number times the robot was at post number P , without leading
zeroes or leading or trailing whitespace.

Sample Input

10 9 2

1

1

1

1

-1

0

-1

-1

1

Output for the Sample Input

2





2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 5
Package Weights

Acme Component Manufacturing creates packages of fasteners for companies that produce assemble-
yourself furniture. These packages contain fasteners of various types that are used in the assembly process.
The packages are put together by machines that dispense the desired quantities of each fastener.

The machines reliably select the required fastener types for the packages. However, during the packaging
process these machines sometimes dispense one too few or one too many of each fastener type. As a check
on the process, the resulting packages are weighed. Each type of fastener has an expected weight and a
tolerance–one fastener of that type will have a weight within the specified range. (For example, if a nut
weighs 0.2 ounces plus-or-minus 0.01 ounce, the weight will be in the range 0.19 to 0.21 ounces inclusive.) The
desired number of each fastener is known, therefore the total weight of a correct package can be determined.

However, given the number of fastener types available, it is possible that in some cases the weight might
be in range, but the contents might still not be correct, due to possible dispensing errors as described above.
Your team is to write a program that will, given a set of fastener types and desired quantities, take package
weights and determine if the package:
• definitely contains the proper fasteners,
• definitely does not contain the proper fasteners, or
• the weight is ambiguous—the package might or might not contain the proper fasteners.

Input to your program will consist of several sections. The first section is a list of between 1 and 50
fastener types, one per line, with the following fields separated by commas:
• Fastener Name: string of 1–36 alphanumeric characters, possibly including spaces and/or hyphens.
• Fastener Standard Weight: floating point value in the range 0.01 to 20000.00 inclusive.
• Fastener Weight Tolerance: floating point value in the range 0.0001 to 100.0000 inclusive.
This list will end with an empty line.

The second section contains a list of expected fastener package contents. There will be 1 to 20 fastener
packages. The first line for each package contains a package name of 1–36 alphanumeric characters, possibly
including spaces and/or hyphens. The remaining 1–14 lines for that package contain a fastener name, a
comma, and a fastener quantity. The fastener name will appear in the fastener type list. The same fastener
type will not appear more than once in the list for any given package. Package lists will appear one after
another in the input. The total expected weight of a package will not exceed 100,000. The list of packages
will also end with an empty line.

The remainder of the input will be a list of package names and actual package weights, one per line.
The package name will be separated from the actual package weight by a comma. This input ends with the
end-of-file. No leading or trailing whitespace will appear on any input line.

For each weighed package your program is to determine whether the package is correct or not—if that
can definitely be determined. If the package is definitely correct for the given package name, print a line
containing only the word “pass”. If the package is definitely not correct, print a line containing only the
word “fail”. If it cannot be determined if the package is correct or not, print a line containing only the word
“ambiguous”. No leading or trailing whitespace is to appear on an output line.



Problem 5
Package Weights (continued)

Sample Input

Bolt,10.0,0.1

Bracket,17.0,0.2

Mounting Plate,35.0,1.0

Nut,8.0,0.1

Package A

Bolt,4

Nut,4

Bracket,2

Mounting Plate,1

Package B

Bolt,2

Nut,2

Bracket,1

Package A,141

Package A,145.5

Package B,52.87

Output for the Sample Input

ambiguous

fail

pass



2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 6
Savage Pokémon

Mysterious parks are being discovered throughout California this year. These parks are unique because

there are Pokémon wandering around the park. However, there is a chance that a visitor who enters one of

these parks may never come out. Despite this risk, visitors come to these parks in the hope of getting to a

location where there is a chance of catching a rare Pokémon never seen before.

These parks are divided into many sections. When visiting such a park, you are randomly assigned a

starting section, a destination section, and a series of sections to visit. Some people get trapped and are not

able to leave the park. This happens when there is no way to get to their destination section by way of the

assigned sections. Some people reach the destination section, but fail to catch the mysterious Pokémon. You

want to avoid being trapped because you cannot get to your destination section given your assigned random

path, so you compile a list of all the parks, how they are connected and determine which parks to visit using

your computer science knowledge.

There is a cylinder at the entrance of the park which brave visitors step into to get teleported to a

random start section of the park. The park consists of multiple sections labeled by numbers. A random list

of sections you must visit is loaded into your assigned Pokédex. The Pokédex is a digital device that has the

information you need about the paths in the park and your assigned start and end section.

For example, a random start section 1 is assigned to you, along with a random list of sections ending

at section 6. Example park sections are connected as follows: 0 to 1, 1 to 2, 2 to 3, 2 to 5, 3 to 4, 0 to 6.

If you are assigned a random section list of 1, 2, 3, 4, 6, you are trapped because there is no way to reach

section 6 from section 4. However, if the park also had a route from 4 to 0, then you could use the route

4 to 0 to 6 to successfully get to the destination. The connectivity maps for the parks are available to the

public outside of the parks. The map of the park gets loaded into your Pokédex. Connections are one-way:

if a map indicates section 0 connects to section 1, that same connection cannot be used to go from section

1 to section 0.

You need to follow the path from your random start section to a random destination indicated in your

Pokédex, visiting each assigned section in turn. Your time in each section is limited and your Pokédex will

alert you that it is time to exit each section so that you can move to your next section. Some visitors at

some parks cannot get to their randomly generated final destination so they get trapped and risk being eaten

by savage Pokémon. You decide to write a program that will use the information about how the sections

are connected in each park to determine if you will be able to get from any start section to any destination

section no matter what sections you are assigned to visit. If you find a park in which you are not able to

follow a path to every other section from any possible start section, you need to avoid it. Otherwise, you

will go visit it.

The first line of the input is an integer T , which is the number of the parks you are considering visiting.

T sets of park information follow. Each set of information starts with two integers: N , the number of

sections in the park in the range 0 < N ≤ 100,000, and R, the number of section connections, in the range

0 < R ≤ 200,000. The next R lines each contain two integers X and Y , 0 ≤ X,Y < N , meaning that there

is a connection from section X to section Y . No sections connect to themselves, nor will there be duplicate

connection entries. Each section will have at least one other section that connects to it, or that it connects

to.

For each park, your program is to print a line that indicates whether you will be able to get to any

assigned destination section from any starting section no matter what sections you are assigned to visit. If

you are not able to get to every other section after starting at any section, print only the string “Oh, oh!”

on the line. Otherwise print only the string “Gotta Catch Them All!” on the line.



Problem 6
Savage Pokémon (continued)

Sample Input

3

3 3

0 1

1 2

2 1

4 4

0 1

1 2

2 3

3 0

3 2

0 1

1 2

Output for the Sample Input

Oh, oh!

Gotta Catch Them All!

Oh, oh!



2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 7
Spectral Composition

Scientists at the Interstellar Consortium of Planets and Constellations (ICPC) are studying the spectral
composition of many celestial objects. The emission spectrum of a celestial object is the spectrum of
frequencies of electromagnetic radiation emitted due to its atomic energy transitions. In other words it
corresponds to the intensity for each color radiated by an object.

The ICPC stores the emission spectrum of a celestial object discretely by sampling it at different wave-
lengths. The emission spectrum is then represented with a list of integers where each position corresponds to
the intensity of a specific wavelength. Contiguous positions in the list correspond to contiguous wavelengths
in the spectrum.

Given an emission spectrum, the ICPC would like to know the intensity of the k-th wavelength, ordered
by intensity, between two given wavelengths. However, in the lifetime of an object the intensity of two
contiguous wavelengths could be swapped due to complex atomic reactions not yet fully understood. Your
team is to write a program that will help the ICPC track wavelength swaps and determine the k-th most
intense wavelength in a given range.

The input is in two sections. The first is the initial wavelength data which consists of a sequence of lines.
Each line contains integers in the range 0–1,000,000 inclusive separated by whitespace. The first integer is
w0 and the last wN . The wavelength section is terminated by an empty line. There will be at most 10
numbers on a line.

The remainder of the input consists of updates and queries, one per line. These are terminated by end
of file.

An update has an “A” at the start of the line, a space, and an integer s, 0 ≤ s ≤ N − 1, and indicates
that ws and ws+1 have swapped places.

A query has a “Q” at the start of the line, a space, and three integers, i, j, and k separated by spaces.
0 ≤ i ≤ N, i ≤ j ≤ N, k ≤ j − i. The wavelengths of interest are wi through wj , and k indicates the k-th
wavelength is the one wanted. For example, if wi . . . wj are 50, 27, 18, 0, 29, 18, which ordered by intensity
are 0, 18, 18, 27, 29, 50, k = 0 would get 0 and k = 5 would get 50.

N will be at most 99,999 and the total number of updates and queries will be at most 1,000.

For each query print the wi+k element after putting wi . . . wj in non-decreasing order. Print each number
on one line with no unnecessary zeroes and no leading or trailing whitespace.

Sample Input

1 4 1 4 5 3 7

Q 0 6 2

Q 3 5 1

A 2

Q 3 5 1

A 5

Q 3 5 2



Problem 7
Spectral Composition (continued)

Output for the Sample Input

3

4

3

7



2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 8
Hotel Rewards

You are planning to spend your holidays touring Europe, staying each night in a different city for N

consecutive nights. You have already chosen the hotel you want to stay in for each city, so you know the
price Pi of the room you’ll be staying at during the i-th night of your holidays, for i = 1, . . . , N .

You will book your accommodations through a website that has a very convenient rewards program,
which works as follows. After staying for a night in a hotel you booked through this website you are awarded
one point, and at any time you can exchange K of these points in your account for a free night in any hotel
(which will however not give you another point).

For example, consider the case with N = 6 and K = 2 where the prices for the rooms are P1 = 10,
P2 = 3, P3 = 12, P4 = 15, P5 = 12 and P6 = 18. After paying for the first four nights you would have
four points in your account, which you could exchange to stay for free the remaining two nights, paying a
total of P1 + P2 + P3 + P4 = 40 for your accommodations. However, if after the first three nights you use
two of the three points you earned to stay the fourth night for free, then you can pay for the fifth night and
use the final two points to get the sixth one for free. In this case, the total cost of your accommodations is
P1 + P2 + P3 + P5 = 37, so this option is more cost-effective.

You want to write a program that determines what the minimum possible cost will be for your holiday
accommodations. You should assume that all the hotels you want to stay at will have a room available for
you, and that the order of the cities you are going to visit cannot be altered.

The first line of the input contains two integers N and K, separated by one or more spaces, representing
the total number of nights your holidays will last, and the number of points you need in order to get a free
night (1 ≤ N,K ≤ 105). The remaining N lines contain integers P1, P2, . . ., PN , representing the price of
the rooms you will be staying at during your holidays (1 ≤ Pi ≤ 104 for i = 1, 2, . . . , N). No input line will
contain leading or trailing whitespace.

Your program is to print a line with a single value: the minimum cost of your accommodation for all of
your holidays as an integer, without any leading zeroes or leading or trailing whitespace.

Sample Input

6 2

10

3

12

15

12

18

Output for the Sample Input

37





2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 9
Ellipse

Your team is to write a program that will, given two ellipses, find the minimum distance between points
on their respective perimeters. The ellipses will not intersect and one will not contain the other.

The equations for the general parametric form of an ellipse may be helpful:

x(θ) = xc+ a · cos(θ) · cos(φ)− b · sin(θ) · sin(φ)

y(θ) = yc+ a · cos(θ) · sin(φ) + b · sin(θ) · cos(φ)

where:
xc, yc: location of the center,
a: major axis radius,
b: minor axis radius,
φ: angle between x-axis and major axis, and
θ: the parameter 0 ≤ θ < 2π. This is known as the the eccentric anomaly, as shown in Figure 1.

Figure 2 shows all of these values for the first ellipse in the sample input.

Input to your program is a series of lines terminated by end of file. Each line contains the definitions of
the two ellipses as numeric values separated by whitespace:

xc1 yc1 a1 b1 φ1 xc2 yc2 a2 b2 φ2

Values will fall within these limits:
−10 ≤ xc1, yc1, xc2, yc2 ≤ 10
0.1 ≤ a1, b1, a2, b2 ≤ 10
b1 ≤ a1 and b2 ≤ a2
0 ≤ φ < 2π

Input values will be either integers or floating point numbers without exponents.

For each pair of ellipses, your program is to print a line containing the minimum distance to 5 decimal
places with no extra whitespace.

Sample Input

5 10 6 3 0.78539816339744828 -3 4 3 2 3.1415926535897931

5 10 6 3 0.78539816339744828 -3 14 3 2 3.1415926535897931

5 10 6 3 0.78539816339744828 10 18 20 2 0

1 2 10 .1 0 -1 -1 10 .1 0

1 2.000 8 4 0 -1 -5 10 2 0

Output for the Sample Input

1.36893

3.03640

1.26797

2.80100

1.02997



Problem 9
Ellipse (continued)

Figure 1. Construction of the Eccentric Anomaly.

Figure 2. First ellipse in the Sample Input.



2016/2017 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 10
Lightweight Calendar App

Your team has been contracted to produce a very lightweight calendar mobile app. Given a sequence
of iCalendar specifications interspersed with individual dates, your program must produce a single day’s list
of appointments based upon the calendar entries encountered in the input. An iCalendar specification is a
series of keyword:value pairs, one pair per line as seen below:

BEGIN:VCALENDAR

METHOD:methodname
one or more event specifications
END:VCALENDAR

Events are single or multiple periods of time, called occurrence(s), grouped together by a single, unique
identifier (UID) as described below. Methodname can be either PUBLISH, ADD, or CANCEL. PUBLISH creates
new calendar events (new UID), or completely supersedes the definition of existing events (matching a
previously defined UID). ADD adds new occurrences to events with matching UIDs. CANCEL removes either
occurrences from events, or entire events, for existing UIDs.

An event specification is itself a series of keyword:value pairs sandwiched between BEGIN:VEVENT and
END:VEVENT:

BEGIN:VEVENT

event details
END:VEVENT

Each event is identified by a unique identifier (UID) specified within event details. Event details are
also keyword:value pairs, one per line, and can be the following:

UID:event id
unique event ID, occurs exactly once per VEVENT. 1–32 alphanumeric characters, possibly including
hyphens

SUMMARY:summary
text summarizing the event

LOCATION:location
text describing the location of the event

DTSTART[; optional timezone]:date-time
occurrence starting date and time, only in PUBLISH and ADD methods, exactly once per VEVENT

DTEND[; optional timezone]:date-time
occurrence ending date and time, only in PUBLISH and ADD methods, mutually exclusive with
DURATION

DURATION:length of time
event duration, only in PUBLISH and ADD methods, mutually exclusive with DTEND

SEQUENCE:sequence number
if omitted, defaults to the highest specified sequence, starting at 0

RDATE:list of dates
an optional comma-separated list of one or more dates that the event will occur on.

RECURRENCE-ID[; THISANDFUTURE]:individual occurrence start date-time
for CANCEL method, the starting date-time corresponding to an occurrence. If THISANDFUTURE is
specified, remove the occurrence identified by date-time, as well as all occurrences after date-time.
The absence of RECURRENCE-ID in a CANCEL method indicates removal of the entire event.



Problem 10
Lightweight Calendar App (continued)

Your program should process the above keywords only when they occur between BEGIN:VEVENT and
END:VEVENT. Ignore any timezone specifications (all times will be for a single timezone). All dates will be in
a Gregorian Calendar system.

The fields in the previous descriptions are defined as follows:

summary and location
printable (non-control) characters except double-quote, comma, semicolon, and backslash. Maxi-
mum of 32 characters. Summary will not include lower-case letters.

date-time
string in the form YYYYMMDDThhmmss, where YYYY is a four digit year, MM is a month in
the range 01–12, DD is a day in the range 01–31, hh is hours 00–23, mm is minutes 00–59, and ss
is seconds 00–59. There will be no leap seconds in the input. All dates will be legal dates. You can
expect leap years to be present.

date
string in the form YYYYMMDD, where YYYY, MM, and DD are described as for date-time.

length of time
string of the form Thhmmss, where hh is hours 00–23, mm is minutes 00-59, and ss is seconds
00-59, specifying the length of an occurrence of the event.

sequence number
an integer, used in combination with a UID. If a VEVENT specification matches a previously en-
countered UID, and the sequence number is greater than the highest value previously encountered,
then the new specification takes precedence. If the sequence number is less than or equal to the
previously encountered VEVENT sequence number, then the update is out of sequence and should be
ignored.

Occurrences within a single event (same UID) will never overlap. Different events (different UIDs)
can have overlapping occurrences. There will be no zero-length occurrences. For occurrences that end at
midnight, the occurrence is reportable only for the preceding day(s). For example, an event start date and
time of November 12, 2016 at 1900 with a 5 hour duration should only be reported for November 12th.

Input to your program is a list of VCALENDAR entries, interspersed with report dates. There are many
lines with keyword:value pairs not specified here. Your program must ignore such lines. A report date is
a single line of the form YYYYMMDD, just like the format of RDATE dates. YYYY will be in the range
2000–2800, and leap years can occur. A year is a leap year if it is a multiple of 400, or if it is a multiple of
4 and not a multiple of 100.

Your program is to print one or more lines per reporting date specified. On the first line, print the date
as MM-DD-YYYY followed by end-of-line. MM is the two-digit month, DD is the two-digit day, and YYYY
is the four-digit year. Months and days should be printed with leading zeroes if needed.

Your program should then print a line for each occurrence that spans any time within the reporting date,
with start and stop times for only the times that occur within the reporting date. The line starts with two
spaces, followed by occurrence information of the form “HH:MM:SS-hh:mm:ss summary (location)” where
HH:MM:SS is the starting time and hh:mm:ss is the ending time.HH and hh are the two-digit hours (00–23),
MM and mm are the two-digit minutes, and SS and ss are the two-digit seconds. Hour, minute, and second
values should be printed with a leading zero if needed. For occurrences that end at or after 00:00:00 on the
subsequent day, print a stop time of 24:00:00.

The summary is the the text from the SUMMARY keyword associated with the event. location is the text
from the LOCATION keyword. If no summary or location text exists, substitute no characters into the format,
but leave the format the same. For example, no summary would produce two spaces between the stop time
and the open parenthesis, whereas no location would produce “()”.



Problem 10
Lightweight Calendar App (still continued)

Print the occurrences in ascending order by start time. For occurrences with the same start time, print
the shorter one first. For occurrences with the same start and end times, print the occurrence with the
lexicographically sorted SUMMARY first.

Sample Input

BEGIN:VCALENDAR

METHOD:PUBLISH

BEGIN:VEVENT

SUMMARY:PRACTICE SESSIONS

DTSTART;TZID=America/Los Angeles:20160913T150000

DTEND;TZID=America/Los Angeles:20160913T160000

DTSTAMP:20160914T031535Z

UID:09664996-2cd8-4ee1-a8e3-7ec2bb1c23b8

SEQUENCE:1891

LOCATION:Library

RDATE:20161101,20161108,20160920,20160927,20161004,20161011,20161018,20161025

END:VEVENT

BEGIN:VEVENT

SUMMARY:CONTEST

DTSTART;TZID=America/Los Angeles:20161112T090000

DTEND;TZID=America/Los Angeles:20161112T210000

DTSTAMP:20160914T031535Z

UID:96e4f592-8a4e-42de-8826-d377b52d9f47

SEQUENCE:1891

LOCATION:RCC

END:VEVENT

END:VCALENDAR

BEGIN:VCALENDAR

METHOD:ADD

BEGIN:VEVENT

UID:09664996-2cd8-4ee1-a8e3-7ec2bb1c23b8

DTSTART;TZID=America/Los Angeles:20160921T210000

DURATION:T050000

SEQUENCE:1892

END:VEVENT

END:VCALENDAR

20160920

20160922

BEGIN:VCALENDAR

METHOD:CANCEL

BEGIN:VEVENT

UID:09664996-2cd8-4ee1-a8e3-7ec2bb1c23b8

SEQUENCE:1893

RECURRENCE-ID:20160920T150000

STATUS:CANCELLED

END:VEVENT

END:VCALENDAR

20160920



Problem 10
Lightweight Calendar App (still continued)

Output for the Sample Input

09-20-2016

15:00:00-16:00:00 PRACTICE SESSIONS (Library)

09-22-2016

00:00:00-02:00:00 PRACTICE SESSIONS (Library)

09-20-2016


