

2018/2019 Southern California Regional

International Collegiate Programming Contest

Problem Set

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 1
Backup Orphans

GigantoCorp has a problem. They have removed all tape drives from their data center and are doing
all of their backups to disk storage. However, they seem to have used more disk space than their backup
software indicates should be in use. They think that there are files on the backup storage that are not in the
backup software index. They would like your team to write a program to determine if there are “orphan”
files on the backup storage that are not in the backup software index—or “orphan” index entries that have
no corresponding files on the backup storage.

Input to your program is structured in two blocks. The first block is the index of backup images, one
per line. Each backup image name consists of 1 to 32 printable ASCII characters (no spaces). There may
be up to 100,000 images. Each backup image name is unique, and the image names may occur in any order.
The block ends with an empty line.

The second block contains a list of backup file names, one per line. A backup file name has the format
imagename_time_type, where imagename is a backup image name in the format described above, time is an
integer in the range 0 to 2,000,000,000 inclusive representing the time in seconds since January 1, 1970 at
00:00 GMT (the “UNIX epoch”), and type is a string of one to six uppercase letters. There may be up to
300,000 backup file names, and they may occur in any order. Each backup file name is unique. There may
be multiple files that correspond to the same backup image. The block ends with the end-of-file.

Your program is to print the list of files with no corresponding index entries, one per line, by printing
the character “F”, a single space, and the file name. After all the orphan files are printed, print the orphan
index entries one per line by printing the character “I”, a single space, and the backup image name. Entries
in each list are to be printed in ASCII lexicographic order. No leading or trailing whitespace is to be printed
on an output line.

If every file has an index entry and every index entry has one or more files, print a single line containing
only the string “No mismatches.” (without the quotes, but with the period).

Sample Input

payroll.xls

projects.doc

employees.dat

products.txt

payroll.xls_1539199053_INCR

employees.dat_1539199053_INCR

payroll.xls_1539112653_INCR

employees.dat_1539112653_INCR

payroll.xls_1539026253_FULL

employees.dat_1539026253_FULL

customers.dat_1539026253_FULL

Problem 1
Backup Orphans (continued)

Output for the Sample Input

F customers.dat_1539026253_FULL

I products.txt

I projects.doc

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 2
Lost is Close to Lose

Better Documents Inc. is contemplating the next generation of word processors. Now, nearly every
word processor includes a Spell Checker. BDI, however, is looking forward to replacing that with a true
Typo Checker. We’ve all been caught, after relying on a spell checker, by typing mistakes (“typos”) that
just happen to wind up as a correctly spelled word, just not the word we intended. BDI hopes to use AI to
determine when a word’s context suggests that it is out of place and probably should have been a different,
but similarly spelled, word.

As a first step in this process, they want to see how common such similar words really are in ordinary
text. Write a program that reads paragraphs of text and produces a list of similarly spelled words occurring
in that text.

For the purpose of this program, a word is any maximal string of non-whitespace characters containing
at least one alphabetic character. Whitespace can be either blanks or line terminators. The core of a word is
what you have left after removing any non-alphabetic characters and replacing any upper-case letters with
their lower-case equivalents.

Two words are considered to be similarly spelled if the core of one word can be converted to the core of
the other word by a single application of any one of the following transformations:
• Delete a single character.
• Insert a single alphabetic character.
• Replace a single character by a different alphabetic character.
• Transpose any two adjacent characters.

Input consists of 1 to 100 lines of text, followed by an end of input marker in the form of a line containing
only the string “***”. Each line of text will contain 0 to 80 ASCII characters (not counting line terminators).

For each word core in the text that has one or more similarly spelled words, print a line consisting of
• That word core
• A colon followed by a blank
• A list of all similarly spelled word cores (with no duplicates and not containing the core to the left of

the colon), in alphabetic order, separated by a single blank.

The lines printed should be in alphabetic order of the word cores to the left of the colon. If there are
no similarly spelled words in the input, print a single line containing only the string “***”.

No leading or trailing whitespace is to appear on an output line.

Sample Input

Lost is Close to Lose

"Better Documents Inc. wants to add Typo Checking in to the

next generation of word processors," he said.

Problem 2
Lost is Close to Lose (continued)

Output for the Sample Input

close: lose

he: the

in: inc is

inc: in

is: in

lose: close lost

lost: lose

the: he

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 3
Collusion on Two Wheels

Two bicycle courier services have been competing in Metro City for many years, stealing customers back
and forth from one another. Recently, they have come to realize that they would be better off if they could
attract new customers instead. A problem is that, over time, each company’s customers have become so
widely scattered across the city that some of their delivery times are unacceptably slow, leading to customer
dissatisfaction and a poor reputation.

The companies would like to divide up their current customers so that each company could run ads
saying “We guarantee delivery in no more than M minutes”, hoping to attract new customers. The streets of
Metro City are laid out on a grid, with buildings at integer coordinates of the grid. The couriers must travel
along those roads—they cannot cut through buildings. It takes one minute to travel one unit of distance in
the x or y direction.

Your team is to write a program to divide up the current customer base. The objective is to minimize
the longest delivery time required by either company to have a courier travel from one customer of that
company to any other customer of the same company.
• A delivery is considered to have been completed when the courier reaches the (x, y) address of the
customer. No time is counted for wandering the hallways of the customer’s building.

• It is acceptable that a courier traveling from one customer to another will pass by customers of the same
or of the other company. No extra time delay is accrued for riding past a customer.

• If it should happen that one company winds up with only a single customer, that company puts someone
on site to deliver messages within that one building. This is considered a zero delivery time.

Input to your program starts with a line containing an integer N , the number of customers to be divided
up. 2 < N ≤ 1,000. This is followed by N lines, each containing a pair of integers x and y denoting the
position of one customer. 0 ≤ x, y ≤ 1,000.

Your program is to print a single line containing the longest delivery time required by the two companies
(i.e., the maximum of the two longest delivery times offered by each company separately).

Sample Input

6

1 1

4 1

1 5

10 10

10 8

7 10

Output for the Sample Input

7

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 4
Floor Tiling

A construction crew has to cover the floor of a room with square tiles. The tiles come in different
sizes, the largest of which is N ×N inches, where N is a power of 2. Other available sizes are N/2×N/2,
N/4×N/4, and so on, down to 1× 1. The room is not necessarily rectangular, but it is guaranteed to be a
convex quadrilateral.

The workers were instructed to cover as much as possible with N ×N tiles, then switch to N/2×N/2
and cover as much of the remaining area with those tiles, and so on, reducing the size of the tiles used at
each step. The foreman of the crew realized that the optimal tiling pattern satisfying these constrains was
too difficult to determine, so he decided to simplify the tile placement algorithm to something that would
be easy for his crew to follow and that seemed to produce “pretty good” results.

The foreman’s algorithm is as follows:
• Pick a point somewhere inside the room to be the origin of a coordinate system with east-west (X)
and north-south (Y) axes.

• Place N ×N tiles aligned to the X and Y axes, while making sure that the coordinates of the tile
corners are multiples of N .

• For each smaller size K ×K the tile coordinates must be multiples of K.

Write a program that computes the number of tiles of each available size that will be needed to cover a
room. Figure 4-1 below shows an example that corresponds to the sample input.

Figure 4-1. Tiling example corresponding to the sample input.

Problem 4
Floor Tiling (continued)

The input will consist of one or more lines, each describing a test case. The format of each line will be
the following:

N x1 y1 x2 y2 x3 y3 x4 y4

where 1 ≤ N ≤ 1024 is the largest tile size available, and (xi, yi) are the four corners of the room in counter-
clockwise order. All x and y coordinates will be in the range [−106, 106] and the origin (0, 0) is guaranteed
to be inside the room.

For each line in the input the output should contain one line in the following format:

Cn Cn−1 ... C0

where N = 2n and Ck is the number of tiles of size 2k needed. Values are to be separated from each other
by single spaces. No leading or trailing whitespace should appear on an output line.

Sample Input

4 11 -11 16.7 10.4 -12.5 10.4 -11.9 -9.75

Output for the Sample Input

22 31 22

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 5
Playing the Slots

The small nation of Erratica prides itself on defying conventions established by the more “boring”
countries around the world. One of their more obvious distinctions lies in the design of their coinage.
Believing that a person should be easily able to identify the value of a coin in a pocket or change purse by
touch alone, Erratica designs its coins as polygons. For stability, the coins are convex—there are no notches
cut into the coins. But, the overall shapes themselves can be quite irregular. Curiously, Erratica national
law states that all coins must be the same thickness.

Erratica Vending, the only manufacturer of vending machines in the nation, has been sent the design
for a new coin to be issued. Their machines are designed so that coins enter through a slot into a channel,
with the slot being the open face of the channel. From the outside of the machine, the slot appears as a
narrow rectangular hole, wide enough for the standard thickness of the coin, but long enough to accomodate
the entire coin.

The company wants to know what would be the smallest slot length they will need so that the new coin
can be slipped, after some rotation, into the slot.

Input begins with a line containing N , the number of sides to the polygonal coin (3 ≤ N ≤ 20). This
is followed by N lines, each containing two floating point numbers, x and y, 0.0 ≤ x, y ≤ 100.0, that are the
coordinates of a vertex of the polygon. The two floating point numbers are separated by at least one space.
All N vertices will be distinct, and the vertices will be presented in an order proceeding clockwise around
the perimeter of the coin.

Print a single line with a floating point number, rounded to and printed with two decimal places,
denoting the minimum slot length allowing the coin to pass through. No leading or trailing whitespace is to
appear on the output line.

Sample Input

3

0 0

0.71 3.54

4.21 4.21

Output for the Sample Input

2.00

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 6
All Your Base

A magician has been invited to perform mental tricks at a math conference. For her final trick she
picks two volunteers from the audience and places them in separate booths. She then proceeds to transmit
a number using “thought projection” to both volunteers. Each volunteer writes the first number between 1
and 264 − 1 that comes to mind on a piece of paper. When the volunteers come out of the booths and show
their numbers to the audience the two numbers match! Well, sometimes they do. . . Sometimes the numbers
look different, but the magician claims that the two numbers are simply the same number written in two
numeral systems with different bases. Your task is to write a program to verify the magician’s claims.

In general, a sequence of digits
amam−1...a1a0

in base b represents the number
ambm + am−1b

m−1 + ...+ a1b+ a0

For example, 1012 = 510.

Sometimes a piece of paper shown to the audience has a mix of digits and English letters, or, in
some cases, only letters. The magician has an explanation for that too—the base b is greater than 10.
For b > 10 the letters of the alphabet are used to represent digits greater than 9. For example, in the
hexadecimal system (base 16) it is common to use A = 10, B = 11, ..., F = 15. We can extend this notation
to G = 16, ..., X = 33, Y = 34, Z = 35 to represent digits for numeral systems up to base 36. For example,
XYZ36 = ABFB16.

Input to your program will start with a number N on the first line, followed by N lines, each containing
two alphanumeric strings separated by a space, representing pairs of numbers from two volunteers. Each
string will consist of at most 64 characters.

The output should contain N lines, one for each pair of strings, containing only the word “yes” if there
exist two bases b1 and b2, 2 ≤ bi ≤ 36, such that the first string in base b1 represents the same number as
the second string in base b2, or only the word “no” if no such bases exist. No leading or trailing whitespace
is to appear on an output line.

Sample Input

3

101 5

XYZ ABFB

Z1G L0L

Output for the Sample Input

yes

yes

no

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 7
Find Poly

Your team is to write a program that examines a set of geometric figures and counts how many are
polygons. For the purposes of this problem:
• A geometric figure is a set of line segments connected directly or indirectly at their end points.
• A polygon is a geometric figure where all the connected line segments form exactly one loop.

Figure 7-1 has ten geometric figures of which a, b, e, and f are polygons. The dots represent the end
points of the line segments. Note that b is self-intersecting, but that intersection is not at the end points of
the intersecting line segments. Similarly, c and d as well as e and f intersect but are not connected.

The input is a series of lines terminated by end-of-file. Each line will have one or more line segments of
the form:

(x1, y1), (x2, y2);

where (x1, y1) is one end point and (x2, y2) is the other end point. The separator characters, “(),;” may
be preceded and followed by white space. A line will be at most 100 characters long. There will be at most
200 line segments.

A given line segment will appear only once in the input and no line segment will be of length 0. Each
x and y will be integers ≥ 0 and ≤ 99. Line segments are not directed, so the order of the end points in the
line segment is not significant. The order of the line segments in the input is also not significant.

Your program is to print a single line with the total number of geometric figures followed by a single
space and the number of polygons found. No signs, leading zeroes, or leading or trailing whitespace are to
appear on the line.

Sample Input

(84,84),(78,84);(68,60),(64,64);(20,85),(15,88);(0,0),(2,8);(30,60),(30,66);

(13,40),(18,38);(15,88),(15,95);(18,38),(8,38);(31,7),(25,10);(30,66),(26,70);

(40,14),(30,19);(5,85),(15,88);(48,20),(56,26);(84,84),(84,82);(66,82),(70,86);

(15,95),(25,90);(70,86),(66,88);(59,23),(50,27);(15,88),(5,80);(78,84),(74,82);

(60,80),(66,82);(5,85),(5,80);(25,10),(40,14);(20,85),(25,90);(20,60),(30,66);

(13,36),(14,30);(30,60),(20,60);(64,64),(60,60);(31,7),(30,19);(15,88),(25,90);

(68,60),(76,64);(8,38),(13,40);(5,85),(15,95);(0,0),(10,4);(10,30),(14,30);

(74,82),(70,86);(10,30),(12,43);(6,10),(10,4);(5,80),(20,85);(6,10),(2,8);

(60,80),(66,88);(84,82),(74,82);(12,43),(13,36);

Output for the Sample Input

10 4

Problem 7
Find Poly (continued)

20 40 60 80 100

20

40

60

80

100

a

b

c
d

e

f

g
h

i j

Figure 7-1. Figures in the Sample Input.

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 8
Capacity Planning

Capacity planning involves taking known quantities or rates, and projecting the consumption or out-
comes based upon another factor. For example, one might ask “How many megabytes are needed to store a

10 kilobit per second data stream that runs continuously for 52 weeks?” Another question might be “How

fast is something falling, in meters per second, after accelerating from rest for 2 minutes?” A compact way
of writing the above questions is

10 kb|s,52 wk,MB

1 g0,2 min,m|s

where the vertical bar “|” is pronounced “over” or “per”.

Capacity planning can also be useful for unit conversion, such as “How many fluid ounces in a gallon?”

Unit conversion also doubles as recipe scaling; for example “If the recipe calls for 2 tablespoons of butter per

pound of flour, how many tablespoons of butter are needed for 2.5 pounds of flour?” A similarly compact
way of writing the questions is

1 gal,1,floz

2 TBSP|lb,2.5 lb,TBSP

Your program will take a table of unit conversions, then perform capacity planning computations using
the appropriate unit conversions where necessary. Input to your program is a series of lines with one
conversion formula per line, a blank line, then capacity planning questions, one question per line, until
end-of-file. The format of a conversion equation is

k1 u1 = k2 u2

where k1 and k2 are numeric constants, u1 and u2 are unit expressions. Each element is separated by exactly
one space. A unit expression contains an optional numerator, an optional fraction bar “|”, and an optional
denominator. The numerator and denominator, when present, contain one or more unit names. When more
than one unit name is present, the names will be separated by “*”. For example, standard gravitational
acceleration, g0=9.80665 m/s2, and 1 Hz=1/s would be written

1 g0 = 9.80665 m|s*s

1 Hz = 1 |s

The format of the capacity planning question is

ka ua,kb[ub],[kc]uc

where ka, kb, and kc are numeric constants, and ua, ub, and uc are unit expressions in the same format as u1
and u2 above. Note that ub and kc are optional. The optional kc is present to help scale measuring devices.
For example, “If all you have is a half-cup measuring cup, how many half-cups are necessary to measure 1

quart of milk?” The compact notation of the question would be

1 qt,1,0.5 cup

A capacity planning question might require a computation or answer that is the inverse of the stated
units. For example “If the recipe calls for 2 TBSP of butter per pound of flour, and you only have 1.5 TBSP

butter, how many pounds of flour should you use?” The compact question would be

2 TBSP|lb,1.5 TBSP,lb

Problem 8
Capacity Planning (continued)

For each capacity question, print out a single number, rounded and printed to two decimal places. The
number expresses units of kcuc corresponding to the appropriate computation of

kaua × kbub
or 1/(kaua) × kbub
or kaua × 1/(kbub)

or 1/(kaua) × 1/(kbub)

There will be at most fifty entries in the unit conversion table. All conversions are internally consistent.
All unit conversions are simple scalings; there will not be any offset conversions such as Fahrenheit-Celsius.
All capacity planning questions can be answered. No capacity questions evaluate to zero.

No leading or trailing whitespace is to appear on an output line.

Sample Input

1 kB = 1024 B

1 MB = 1024 kB

1 B = 8 b

1000 b = 1 kb

1 min = 60 s

1 hr = 60 min

1 day = 24 hr

7 day = 1 wk

1 g0 = 9.80665 m|s*s

1 Hz = 1 |s

4 cup = 1 qt

4 qt = 1 gal

1 cup = 8 floz

10 kb|s,52 wk,MB

1 g0,2 min,m|s

1 gal,1,floz

2 TBSP|lb,2.5 lb,TBSP

1 qt,1,0.5 cup

2 TBSP|lb,1.5 TBSP,lb

Output for the Sample Input

37490.84

1176.80

128.00

5.00

8.00

0.75

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 9
Swamp County Toll Roads

Swamp County has just completed its first express toll roads. As is now the norm, there are no attended
toll booths—all tolls are collected electronically. Rather than issue electronic tags or transponders to road
users, toll collection is done based on the automated reading of license plates as vehicles pass through a toll
plaza.

For a variety of reasons, sometimes the license plate images are of low quality. When this happens it’s
possible for license plates to be mis-read, particularly since some characters closely resemble others. The
county has studied cases where this has happened and has come up with estimates of the likelihood that a
given character will read correctly.

The county would like your team to write a program that will, given the error estimates for individual
characters as stated above, take a list of license plates as read and determine the probability that the entire
license plate was read correctly.

Input to your program will begin with a list of accuracy estimates. Each estimate consists of the
character, a single space, and its estimate of a correct read, in the range 0 < p < 1. For example, the first
line of the sample input indicates there is an 88% chance that an “I” read from a license plate is actually
an “I”. Any characters not in the list are taken as 100% (p = 1). You may assume that the reading of one
character has no effect on the reading of another character (they are independent). This list ends with an
empty line.

The remaining lines of input contain license plates as read, one per line, starting in the first column.
Each license plate contains a string of one to eight upper-case letters or digits. The list of license plates ends
with end-of-file.

For each license plate, your program is to print a line with the the probability that the license plate was
read correctly as a value between zero and one. The value is to be rounded to and printed with three digits
after the decimal point. No leading or trailing white space is to appear on an output line.

Sample Input

I 0.88

1 0.99

0 0.87

O 0.95

Q 0.87

PR0GRAM

ICPC2018

2JKB843

1JKL893

SNU8J5

Problem 9
Swamp County Toll Roads (continued)

Output for the Sample Input

0.870

0.758

1.000

0.990

1.000

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 10
ABC Conjecture

The ABC Conjecture states that given three positive integers a, b, and c such that c = a+ b, with a and
b having no common prime factors, the product of the distinct prime factors of a× b× c is usually not much
smaller than c.

In order to understand the conjecture, we define the radical of an integer n (denoted as rad(n)) as the
product of the distinct prime factors of n. Stated another way, this is the product of all the primes in n

taken to the first power. For example, rad(36) = rad(2 × 2 × 3 × 3) = 2 × 3 since 2 and 3 are the distinct
primes in 36.

The full conjecture says that rad(a × b × c)ω is usually not smaller than c; and, if ω > 1, even by just
a little bit, there are only a finite number of exceptions. If ω = 1 there are an infinite number of exceptions
but they are still rare.

Of course the interesting cases are where rad(a × b × c) is less than c. Your team’s job is to write a
program to explore this conjecture where ω = 1.

The input is a series of lines terminated by end-of-file. Each line will have a test case of two positive
integers, a and b, separated by spaces. Each integer will be no greater than 2,000,000.

For each test case, print the answer on a separate line. If a and b have at least one prime factor
in common, print only the word “bad”. Otherwise print only the word “less”, “equal”, or “greater” if
rad(a × b × c) is less than, equal to, or greater than c, respectively. No leading or trailing whitespace is to
appear on an output line.

Sample Input

4 127

3 125

5 30

1 4374

1999979 1999993

2000000 1999999

122808 877200

52441 3125

161051 158949

57987 96645

1827904 906471

1192452 1770344

Problem 10
ABC Conjecture (continued)

Output for the Sample Input

greater

less

bad

less

greater

greater

bad

less

less

bad

less

bad

2018/2019 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 11
Picking Up the Dice

Two players are playing a game with a set of K six-sided dice. One player calls out a number in the
range K through 6K inclusive and the other tries to roll that number with K dice. After the first roll, the
rolling player is allowed to pick up any number (0 through K) of dice and re-roll them.

Given the number of dice, the target number the player wants to roll, and the set of numbers the player
obtained on the first roll, what number of dice should the player pick up to maximize their chances of getting
the target number on the second roll? Your team is to write a program to answer that question.

Input to your program begins with a line containing 2 integers separated by one or more spaces: K, the
number of dice, and T , the target number. 2 ≤ K ≤ 24, K ≤ T ≤ 6K.

The next line contains K integers, indicating the numbers that were rolled on each of the dice on the
first roll. All will be integers in the range 1 through 6 inclusive. Input values will be separated from each
other by one or more spaces.

Your program is to print a single line containing an integer denoting the number of dice that the roller
should pick up and re-roll in order to maximize the chances of getting an overall sum of T . If there are
multiple options for the number of dice to choose that have the same maximum chance of getting an overall
sum of T , choose the smallest such number.

No leading zeroes, signs, or leading or trailing whitespace are to appear on the output line.

Sample Input

3 9

5 4 1

Output for the Sample Input

1

