
Official Problem Set

upsilon pi epsilon
honor society

icpc global sponsor
programming tools

icpc EdTech
gold sponsor

ICPC North America Regionals

The 2021 ICPC Southern
California Regional Contest

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 1
Ultimate Binary Watch

The Ultimate Binary Watch is a “maker” project that uses small LEDs to display the time on a watch

face. The display uses four columns of four LEDs each, with each column representing a digit of the current

time in hours and minutes. Time is displayed in 24-hour format, with the left-most column displaying the

tens position for hours, the next column displaying the ones position for hours, the next column displaying

the tens position for minutes, and the right-most column displaying the ones position for minutes. The

bottom LED of each column is the low-order bit, with the bit positions increasing moving up the column.

For example, the time 1615 would be displayed as shown in Figure 1.

Figure 1. Watch face showing a 24-hour time of 1615.

Your team is to write a program that will take a series of 24-hour times and print the corresponding

watch faces. Input is a list of one to sixty valid 24-hour times, each on a separate line beginning in the first

column. The input list ends with the end-of-file.

For each time in the input, your program is to print the time on a line starting in the first column,

followed by four lines with a representation of the watch face displaying that time. The tens of hours is

to be in the first column, the single hours in the third, the tens of minutes in the seventh, and the single

minutes in the ninth. Use asterisks to represent bits that are set and periods to represent bits that are clear.

Columns not used are to be filled with spaces. No extra whitespace is to appear at the beginning or end of

any output line.

Sample Input

1615

1900

0830

Problem 1
Ultimate Binary Watch (continued)

Output for the Sample Input

1615

. . . .

. * . *

. * . .

* . * *

1900

. * . .

. . . .

. . . .

* * . .

0830

. * . .

. . . .

. . * .

. . * .

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 2
Bracket Pairing

There are four types of brackets: round (), square [], curly {}, and angle <>. A bracket sequence is
defined to be valid as follows:

• An empty sequence is valid.

• If X is a valid bracket sequence, then pXq is a valid bracket sequence, where p is an open bracket, q is
a close bracket, and p, q are of the same type.

• If X and Y are valid bracket sequences, then the concatenation of X and Y , Z = XY , is a valid bracket
sequence.

You have a bracket sequence in which some brackets are given, but the others are unknown and rep-
resented by question marks (‘?’). You shall fill in each unknown bracket using the four types of brackets
described above and obtain a valid bracket sequence. How many different valid bracket sequences can you
obtain?

The input is a single line giving a non-empty bracket sequence. The length of the sequence is even and
no larger than 20. All sequence characters are either one of the four types of open or close brackets, or a
question mark denoting an unknown bracket. There is at least one question mark in the sequence.

Output the number of different valid bracket sequences you can obtain.

Sample Input 1

(??)

Output for Sample Input 1

5

Sample Input 2

(<{}>??]

Output for Sample Input 2

1

Problem 2
Bracket Pairing (continued)

Sample Input 3

(?]]

Output for Sample Input 3

0

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 3
Exoplanet Lighthouses

As humanity travels to extraterrestrial bodies, the need for human or robotic explorers to determine
their location on the surface will be critical. Lighthouses offer a simple solution as line-of-sight navigational
beacons. An important measurement for lighthouses is geographic range, the maximum visible, line-of-sight
distance between an observer and the lighthouse before the lighthouse is obscured by the horizon due to the
curvature of the surface. The surface traveling distance corresponding to the geographic range is crucial for
planning fuel and oxygen supplies to ensure an accurate—and safe—return to base stations.

Your team is to write a program that computes the maximum surface distance that allows for a line-of-
sight between an observer and a lighthouse. Your program is to assume that exoplanets are spherical with
a known radius.

Input is a series of one to twenty test cases, one per line, ending with end-of-file. Each line has three
real values separated by whitespace: R, h1, and h2. R is the radius of the spherical body in kilometers,
(100 ≤ R ≤ 20000). h1 is the height of the observer above the surface R in meters, (1 ≤ h1 ≤ 1000). h2

is the height of the lighthouse beacon above the surface R in meters, (1 ≤ h2 ≤ 1000). The observer is a
point-receiver, which can be a sensor or a human eye, and the beacon is a point-source, such as a lamp or
laser. See Figure 1.

For each test case, print a line with a single real value for the maximum surface distance D in kilometers
between the observer and lighthouse. The result must be within one meter of the judges’ reference value.

Sample Input

6371.0 1.0 27.0

6371.0 1.0 26.99

6371 1.0 1.0

1737.4 1 27

Output for the Sample Input

22.117714375394343

22.114279232261655

7.139187161948777

11.550070205049764

Problem 3
Exoplanet Lighthouses (continued)

Figure 1. “Line of Sight” between source and receiver on an exoplanet’s surface. D is the curved
surface distance on the exoplanet. h1 and h2 are perpendicular to the local surface.

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 4
Lone Rook

On a chess board of r rows and c columns there is a lone white rook surrounded by a group of opponent’s
black knights. Each knight attacks up to 8 squares as in a typical chess game, which are shown in Figure 1.
The knight on the circled square attacks the 8 squares highlighted by dots. The rook can move horizontally
and vertically by any number of squares. The rook can safely pass through an empty square that is attacked
by a knight, but it must move to a square that is not attacked by any knight. The rook cannot jump over
a knight while moving. If the rook moves to a square that contains a knight, it may capture it and remove
it from the board. The black knights never move. Can the rook eventually safely move to the designated
target square?

Figure 1 illustrates how the white rook can move to the target square at the top-right corner in the first
sample case. The rook captures one black knight at the bottom-right of the board on its way.

The first line of input contains two integers r and c (2 ≤ r, c ≤ 750). Each of the next r lines describes
one row of the board using c characters: the letter ‘R’ represents the white rook, a ‘K’ represents a black
knight, a dot ‘.’ represents an empty square, and the letter ‘T’ represents the white rook’s target square.
There is exactly one ‘R’, exactly one ‘T’, and at least one ‘K’ on the board. It is guaranteed that the white
rook starts in a square that is not attacked by any knight. The target square may be attacked by a knight,
in which case the knight must be captured before the rook can safely move to the target square.

Print a line contiaining the string “yes” if the white rook can move to the target square, or “no”
otherwise.

Figure 1. Diagram for Sample Input 1.

Sample Input 1

6 6

.....T

..K.K.

K.K...

....K.

R..K..

....K.

Problem 4
Lone Rook (continued)

Output for Sample Input 1

yes

Sample Input 2

3 4

RK..

KK..

...T

Output for Sample Input 2

yes

Sample Input 3

4 4

.K..

KR..

K...

.K.T

Output for Sample Input 3

no

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 5
Land Equality

There is a kingdom where the old King wants to divide his land into two pieces and give them to his
two descendants. The King’s land is a grid of r rows and c columns. Each cell in the grid has an integer
value representing the prosperity of the cell, which can be 0 (deserted), 1 (regular), or 2 (fertile). Two cells
are connected if they share a side horizontally or vertically.

Each descendant shall receive a single connected piece of land with at least one cell, in which all cells
must be directly connected or indirectly connected via other cells. There shall be no leftover cells, which
means that each cell must be given to one descendant. The prosperity of a piece of land is the product of all
the prosperity values of its cells. The King wants the absolute difference between the prosperity of the two
descendants’ land to be as small as possible. He has asked his best counselor to devise a land division plan
between the two descendants.

The first line of input contains two positive integers r and c (2 ≤ r × c ≤ 64). The next r lines each
have c integers giving the prosperity values of the King’s land. All those integers are 0, 1, or 2.

Print a line containing the smallest absolute difference between the prosperity of the two descendants’
land.

Sample Input 1

3 4

1 2 1 1

2 2 1 2

1 2 2 2

Output for Sample Input 1

8

Sample Input 2

2 3

0 1 2

0 1 2

Output for Sample Input 2

0

Problem 5
Land Equality (continued)

Sample Input 3

1 3

2 0 2

Output for Sample Input 3

2

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 6
Subprime

There is an open math problem: Is every non-negative integer a substring of at least one prime number
when expressed in base ten?

Integer a is a substring of integer b if it is equal to an integer derived from b by deleting zero or
more consecutive digits of the most and least significant digits of b. For example, 123 is a substring of:
123, 56123, 123789, 50182312365, 41237912123.

Your team’s job is to see how many primes, in a given range, contain a substring of a given integer. We
are interested in integer substrings that may include significant leading zeroes.

The input is a series of 1 to 25 lines terminated by end-of-file. Each line is a test case, with two positive
integers i, j in base ten and a string k separated by spaces. i and j are indexes into the list of primes in
ascending order, with 2 being the first prime, and k is a string of at most six digits which is the integer
substring to be searched for. k may be zero or have significant leading zeroes. A prime shall be counted only
once even if the digit substring occurs more than once in the prime.

i ≤ j

1 ≤ i, j ≤ 100000

For example, consider the input 1 10 9. This is a search from the first (2) through the tenth (29) primes for
any containing the substring 9. The answer is 2 (19 and 29).

For each test case print on one line the count of the number of primes containing the substring.

Sample Input

1 10 9

1 10000 389

500 1000 43

1 100 8

8000 9000 395

50000 80000 572

90000 100000 9999

1 100000 37502

1 1000 000

1 1000 00

4509 12345 9999

Problem 6
Subprime (continued)

Output for the Sample Input

2

45

26

8

0

63

5

1

0

10

4

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 7
Time of Use

Time-of-Use is a billing technique that charges a consumer for electricity based upon the time of day
that the electricity is consumed, instead of charging a flat rate. Owners of electric vehicles (EVs), either fully
electric or plug-in hybrids, can reduce their electric bills by choosing when to charge. The introduction of
home-based renewable energy sources that provide “free” power, such as rooftop solar, can provide additional
savings. However, the generation of renewable power often overlaps with the most expensive time-of-use
intervals, making the choice of when to charge for minimum incurred costs no longer a simple matter of
charging when the utility rates are least expensive.

Your team will assist EV owners by writing a program that combines average electricity consumption,
time-of-use billing intervals, and projected renewable electricity generation to determine the lowest-cost time
to begin charging their EVs.

Your program will be provided two days (48 hours) of projected electricity consumption (without plug-
ging in the EV), two days (48 hours) of projected renewable electricity generation, and a series of charging
characteristics of the EV. Average consumption and projected electricity generation are reported in 15-minute
intervals.

Input to your program is as follows:

• 192 integer values, separated from each other by spaces and/or new-lines, specifying forty-eight hours
of predicted consumption in integer watt-hours, in 15-minute intervals, corresponding to interval start
times of 00:00, 00:15, 00:30, . . ., through 47:45. Each value will be in the range 0 to 3,000 inclusive.

• 192 integer values, separated from each other by spaces and/or new-lines, specifying forty-eight hours of
predicted power generation in integer watt-hours, in 15-minute intervals, corresponding to interval start
times of 00:00, 00:15, 00:30, . . ., through 47:45. Each value will be in the range 0 to 2,500 inclusive.

• Time-of-use intervals with cost per kilowatt-hour in integer cents. This input begins with a line con-
taining t, the number of time-of-use intervals (1 ≤ t ≤ 24). Each time-of-use interval is expressed as
hhmm1 hhmm2 c, where hhmm1 and hhmm2 are integers expressing hours in the thousands and hun-
dreds place, minutes in the tens and units places. Cost, c, is an integer (1 ≤ c ≤ 200). The first interval
starts at time 0000, and the last interval ends at time 4800. Other than the first interval, hhmm1 for a
given interval always equals hhmm2 for the previous interval. Interval times are in ascending order and
always fall on 15-minute boundaries.

• One to twenty charging configurations, ending with end-of-file. Each configuration contains five integer
values separated by whitespace: battery capacity in watt-hours (range 1,000 to 150,000 inclusive),
charging power draw in watts (range 500 to 6,000 inclusive), current charge as an integer percentage
from 0 to 100, the current time in hhmm format, and the desired time in hhmm format to achieve full
charge. The battery capacity is always a multiple of 100 watt-hours.

For each charging configuration, print the earliest start time on or after the current time to achieve full
charge at the lowest cost. Print the time on a line by itself in hhmm format.

For the purposes of your program, charging occurs in 15-minute intervals. Any “final” 15-minute interval
can either meet or exceed the full charge, however, the charger continues to draw power for the entire interval.
Charging is done in a single continuous session. If full charge is not possible by the desired time, display the
current time as the start time. If no charging is necessary (battery already at 100 percent charge), print the
desired time as the start time.

Problem 7
Time of Use (continued)

Sample Input

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600

600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600

600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600

600 600 600 600 300 300 300 300 300 300 300 300 300 300 300 300

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400

400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5

0000 0730 10

0730 1500 20

1500 2000 40

2000 3200 10

3200 4800 20

12000 1200 0 1600 2000

12000 6000 0 3800 4200

12000 6000 0 3200 4200

12000 2000 0 3200 4200

12000 2000 59 3200 4200

12000 2000 59 1600 4200

Output for the Sample Input

1600

3800

3700

3600

3700

2000

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 8
Culvert

A culvert is a drain or pipe that allows water to flow under a barrier such as a road. Your job is to find
the diameter of the pipe needed to carry the discharge from rain on a specified area.

Here are the empirical formulas to use:

Q = R×M × c× (S/M)
0.25

and
Q = 3.10×D2.31

×H0.5

Where:
• Q is the discharge in cubic feet per second,
• R is the maximum rainfall intensity in inches per hour (0.01 ≤ R ≤ 12),
• M is the area in acres (0.01 ≤ M ≤ 105),
• c is the drainage coefficient of the area (for example: 0.25 for a farming area, 0.75 for a built up business
area with paved streets) (0.2 ≤ c ≤ 0.8),

• S is the average slope of the area in feet per 1000 feet (0.1 ≤ S ≤ 1000),
• D is the diameter of the pipe in feet, and
• H is the minimum head differential of water in feet. That is, the difference in the height of the water
above the inlet of the pipe to the height above the outlet. (0.1 ≤ H ≤ 25)

Culvert pipes come in standard diameters of 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, 60, 66, 72, 75, and 84
inches. There are 12 inches in a foot.

The input is a series of 1 to 25 lines terminated by end of file. Each line has the data for one test case
in this order:

R M c S H
The numbers are separated by spaces. All values are greater than zero.

For each test case, print a line with the diameter in inches of the smallest sized standard culvert pipe
that will carry the flow. Should the flow exactly match the maximum flow of a pipe, use the next highest
size. Should the flow exceed what an 84 inch pipe can carry, print a line containing only the string “non-
standard”.

Sample Input

1 350 .25 20 1.18

5.8 350 .25 20.0 1.18

10 350.0 .25 20.0 1.18

.35 45.7 .75 5 2

.35 45.7 .75 5 .3

.01 1000 .2 2 .1

10 1000 .2 2 5

Problem 8
Culvert (continued)

Output for the Sample Input

42

84

non-standard

15

24

12

72

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 9
Secret Sauce

Restaurant Secret is a popular restuarant in town. Its key to success is its Secret sauce—in almost every
dish, the Secret sauce turns an ordinary dish into a best-seller.

Despite its name, the Secret sauce is just a combination of some ingredients (plus their amounts, which
are always integers). For example,

SecretSauce = garlic × 2 + sugar × 2 + salt × 4 + water × 3

Today, the Secret sauce has run out. Fortunately, the restuarant has some ingredients (not necessarily
all) and some other sauces in stock, each with unlimited supply, which can be used to compose Secret sauce.
For simplicity, the amount of each ingredient or sauce are integers. The recipes of all sauces are known and
given as a combination of ingredients or other sauces along with their integer amounts. For example,

GarlicSauce = garlic × 1 + salt × 2

SweetSauce = sugar × 2 + water × 3

SweetGarlicSauce = SweetSauce × 1 + GarlicSauce × 1

Suppose that all three sauces (Garlic sauce, Sweet sauce and Sweet Garlic sauce) are in stock. One unit
of Secret sauce can be made from: (a) 2 units of Garlic sauce and 1 unit of Sweet sauce, or (b) 1 unit of
Sweet Garlic sauce and 1 unit of Garlic sauce.

The manager of Restaurant Secret hired you to compute in how many ways one unit of Secret sauce
can be made.

Input to your program is in the following format:
M

I1
I2
. . .

IM
N

S1 K1 C1,1 U1,1 C1,2 U1,2 . . . C1,K1
U1,K1

S2 K2 C2,1 U2,1 C2,2 U2,2 . . . C2,K2
U2,K2

. . .

SN KN CN,1 UN,1 CN,2 UN,2 . . . CN,KN
UN,KN

L

C1

C2

. . .

CL

KT CT,1 UT,1 CT,2 UT,2 . . . CT,KT
UT,KT

The first line consists of an integer M (1 ≤ M ≤ 7), the number of all ingredients. The following M

lines contain the names of ingredients, one per line. Each name is an alphabetical string starting with a
lowercase letter, and the length is no more than 20 characters. All ingredient names are unique.

Problem 9
Secret Sauce (continued)

The following line consists of an integer N (1 ≤ N ≤ 20), the number of all known sauces. The following
N lines describe the recipes of sauces. The i-th line starts with the name of the i-th sauce Si (an alphabetical
string starting with an uppercase letter, and the length is no more than 20 characters). The rest of the line
describes the recipe to make 1 unit of this sauce: an integer Ki (1 ≤ Ki ≤ M), the number of different
sauces or ingredients, followed by Ki pairs of strings and integers (Ci,j and Ui,j), where Ci,j is the name
of a sauce or ingredient, and Ui,j is the number of units (1 ≤ Ui,j ≤ 4). All sauce names are unique. All
Ci,j must be unique within this recipe and must be one of I1, I2, . . . , IM , S1, S2, . . . , SN . There are no cyclic
references in the recipes. No sauce will ever aggregate more than 65536 units of any ingredient.

The following line consists of an integer L (1 ≤ L ≤ M+N), the number of different sauces or ingredients
in stock. The following L lines contain C1, C2, . . . , CL, the names of sauces or ingredients in stock, one per
line. All Ci must be one of I1, I2, . . . , IM , S1, S2, . . . , SN . Each sauce or ingredient in stock has unlimited
supply.

The final line describes how to make 1 unit of the Secret sauce: an integer KT (1 ≤ KT ≤ M), the
number of different ingredients, followed by KT pairs of strings and integers (CT,i and UT,i), where CT,i

is the name of an ingredient, and UT,i is the number of units (1 ≤ UT,i ≤ 4). All CT,i must be one of
I1, I2, . . . , IM .

Your program is to print a line with the number of ways to make 1 unit of the Secret sauce. The number
is guaranteed to be less than 263.

Sample Input

2

sugar

garlic

2

SauceA 1 sugar 1

SauceB 2 garlic 1 SauceA 1

3

garlic

SauceA

SauceB

2 garlic 2 sugar 3

Output for the Sample Input

3

Explanation for the Sample

There are three ways to make 1 unit of the Secret sauce: (1) 2 units of garlic and 3 units of SauceA; (2)
1 unit of garlic, 2 units of SauceA and 1 unit of SauceB; (3) 1 unit of SauceA and 2 units of SauceB.

2021/2022 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 10
Stringy

Your job is to reimplement an ancient string processing language. See the attached manual page.

The input consists of a stringy program followed by the input to that program.

The program consists of a series of lines of at most 80 characters terminated by a line starting with

“/*”. That program’s input, if any, follows. Input is a series of lines of at most 80 characters terminated by

the end of file.

The judged data is guaranteed to be valid, with no syntax or run-time errors.

Sample Input

set count ’0’

readLines input aLine /f finish

add count ’1’

rpl aLine ’,’ ’;’ /s

output aLine / readLines

finish set mess count

append mess ’ lines processed’

output mess

/*

foo = 1, 2, 3, 4, 5

bar = a, b, c, d, e, f

spam = 37

Output for the Sample Input

foo = 1; 2; 3; 4; 5

bar = a; b; c; d; e; f

spam = 37

3 lines processed

STRINGY

Stringy is a string processing language. All variables and constants are

strings.

A program is made up of command lines which consist of an optional label,

an operation, an optional list of arguments, and an optional goto section.

An operation is required. The individual tokens on a command line are

separated by whitespace.

A line starting with ’*’ is a comment line.

Variable names and labels start with an alphabetic character and consist

of an alphanumeric string of at most 30 characters. Case is significant.

Variables and labels are in different name spaces but it is considered

poor practice to use variables with the same name as a label. It is

a compile time error to have lines with the same label. It is also a

compile time error if a label is referenced but not defined.

All variables are set to the null string, ’’, at the start of program

execution.

Constants are string literals enclosed in single or double quotes. Within

a literal the enclosing quote is represented by doubling the quote.

These literals represent the same strings: "don’t enter" and ’don’’t

enter’.

A label is defined by starting in the first character of a command line.

If the first character is a blank, the command has no label.

The goto section determines which line of the program is executed next:

’/ foo’ is an unconditional branch to the line with the label ’foo’

’/s foo’ goes to that line if the command was successful

’/f foo’ goes to that line if the command failed

It is a compile time error to mix a conditional goto with an unconditional

one. Both types of conditional gotos can appear, but only one of each.

There can be only one unconditional goto on a line. If there is no goto

or no conditional goto is taken, execution continues with the next line.

As a shortcut, if no label appears after a conditional goto, control

continues on the same command line. Thus

rpl a ’,’ ’;’ /s

is the same as

foo rpl a ’,’ ’;’ /s foo

For numeric operations it is a run time error if any of the strings

are not optionally signed decimal integers. The maximum value is

implementation dependent but should be at least

-10000 <= n <= 10000

Results of numeric operations will start with a ’-’ if needed, but

not a ’+’.

operations:

add a b

a is a variable, b is a variable or a literal

result: the contents of a are set to the old contents of a plus the

contents of b

is always successful

sub a b

a is a variable, b is a variable or a literal

result: the contents of a are set to the old contents of a minus the

contents of b

is always successful

eq a b

a and b can be variables or literals

successful if the contents of a and b are numerically equal

otherwise fails

lt a b

a and b can be variables or literals

successful if the contents of a are numerically less than the contents of b

otherwise fails

gt a b

a and be can be variables or literals

successful if the contents of a are numerically greater than the contents of b

otherwise fails

isnum a

a can be a variable or a literal

successful if the content of a is only a number

otherwise fails

set a b

a is a variable, b is a variable or literal

result: the contents of a are set to the contents of b

always successful

len a b

a is a variable, b is a variable or literal

result: the content of a is set to the length of the content of b

is always successful

rpl a b c

a is a variable, b and c are variables or literals

result: if the content of b is a substring of the contents of a

its first occurrence in a is replaced by the contents of c

successful if the replacement happens otherwise fails

always fails if b is the null string

seq a b

a and b can be variables or literals

successful if the contents of a are equal to the contents of b

otherwise fails

split a b c d

a, c, and d are variables, b can be a variable or literal

result: if the content of b is a substring of a, c is set to the

content of a before the first occurrence of that substring and

d to the content after.

successful it the string is split else fails and the content of c and d

are not changed

always fails if b is the null string

c or d may be the null string if the match is at the beginning or end

of a

append a b

a is a variable and b can be a variable or literal

the content of a becomes the content of the old a concatenated with

the contents of b

is always successful

prepend a b

a is a variable and b can be a variable or literal

the content of a becomes the content of b concatenated with

the old content of a

is always successful

input a

a is a variable

set the content of a to the next line of standard input

does not include any line terminating character

fails if beyond the end of the input file otherwise successful

output a

a can be a variable or literal

output the content of a to standard output followed by a new line

is always successful

exit

terminate the program

notes

There is an implied exit at the end of every program

Compile time and run time error messages are implementation dependent.

