Problem D: Zerg Rush!!!
A typical strategy in the game Starcraft is to mass up large amounts
of low-tier units such as Zerglings, then throw them at your opponent
and laugh maniacally as they overwhelm any opposition. However, when
both players opt for the same strategy, the result can often
become...quick, brutal and messy. Sadly, the game only allows for up
to 400 Zerglings per player. In this problem, however, you will simulate
games that could have more than 400 Zerglings.
The map on which Zerg rushes occur is represented by a NxN grid. Each
Zergling occupies a grid square and no two Zerglings ever occupy
the same grid square. Each Zergling has a certain number of hit points which
starts off as 35. Its attack value is 5 plus the attack upgrade
of the player that controls it. When one Zergling attacks another, the
damage incurred equals to the attack value of the attacking Zergling
minus the armour upgrade of the player that owns the Zergling being
attacked. The number of hit points of the Zergling that is attacked
is reduced by the amount of the damage.
Due to the inability of both players to manage their huge horde of
Zerglings, the Zerglings make their decisions each turn using
the following algorithm (Zerglings are not the brightest creatures, as you will
see):
- If there is an opponent Zergling in one of the 8 horizontally,
vertically, or diagonally adjacent grid squares, the Zergling will attack it.
A Zergling attacks at most one opponent each turn; see below for the
tie-breaking rules.
- Otherwise, if the other player has at least one Zergling remaining
on the map, the Zergling will move to the horizontally, vertically,
or diagonally adjacent square that is closest to the opponent's closest
Zergling in terms of
Manhattan distance.
When more than one adjacent square is closest, the tie-breaking
rules below are used.
The Manhattan distance between two points is the sum of the
differences in the x and y coordinates of the
points.
When the above rules could cause the Zergling to attack in more
than one direction, or to move in more than one direction, the
following tie-breaking rule is used.
The
Zergling will prefer the first direction starting with north going
clockwise. That is, the directions in order of preference are north,
northeast, east, southeast, etc.
Once all Zerglings have made their decisions, all the attacks are conducted simultaneously and
all the Zerglings with 0 or fewer hit points are marked as dead and removed
from the map. Then all the movements of the Zerglings that didn't
attack are conducted simultaneously. If the square to which a Zergling
is moving is occupied by another Zergling that is not moving away in
this turn, then the Zergling does not move.
If two or more Zerglings try to move to the same grid square,
then the Zergling
in the northernmost row
has the right of
way and the other Zergling remains stationary. If there are
multiple Zerglings in the northernmost row trying to move to the same
grid square, then of these, the westernmost Zergling moves and
the others remain stationary.
Zerglings also have a
remarkable regeneration rate. After each turn, all the Zerglings that
are still alive and have less than 35 hitpoints will regain one hit
point.
Input Specification
The input file contains a number of test cases, ended by a case with
N=0. Each case begins with N between 2 and 150, followed by 2 pairs of
2 integers between 0 and 3, the attack and armour upgrades of the first
player, followed by the attack and armour upgrades of the second
player.
This is followed by the initial game map, where
'.' denotes an empty square, '1' a Zergling belonging to the first
player and '2' a Zergling belonging to the second player.
On the map, north is up (i.e. towards the first row) and west is left
(i.e. towards the first column).
Finally, the
test case provides the number t of turns for which the Zerg rush is to be
simulated,
which is an integer between 0 and 400, inclusive.
Sample Input
2
0 0
0 0
1.
..
0
2
0 0
0 0
1.
.2
100
0
Output Specification
For each input case, output the map after t turns in the same format
as above. Print one empty line between the output for consecutive
test cases.
Output for Sample Input
1.
..
..
..
Richard Peng, Ondřej Lhoták