
Chapter 9

Strings

9.1 Pattern Matching
9.1.1 KMP
9.1.2 Z-func
9.1.3 Multi-pattern Matching/Aho-Corasick

9.2 Finding Minimum Rotations
9.2.1 Kevin’s fancy rotation algorithm
9.2.2 Lyndon Decomposition/Duval’s Algorithm

9.3 Palindromic Substrings: Manacher’s Algo-
rithm

9.4 Regexes

9.5 Suffix Trees
A suffix tree is a structure where every path from the root to a leaf encodes some
suffix of an input string, and all suffixes are encoded along some such path. It
can be used to solve several problems, some of which are covered earlier in the
chapter, including:

1. Checking if a pattern exists in a string

2. Finding the location of all instances of a pattern within a string

3. Finding the lonest repeated substring within a string

71

4. Finding the lonest common substring (LCS) between two input strings

5. Finding the longest palindromic substring within an input string

6. Finding the minimum rotation of an input string

7. Constructing the suffix array

9.5.1 Building Suffix Trees
In this section, we will present a naive suffix tree, demonstrate how, through a
series of optimizations, we can operate on, and then build it, in linear time. Fol-
lowing sections will demonstrate how to use it to solve the above listed problems.
Throughout, we will use the following string in our demonstrations:

ABCABDABCEA

The Naive Tree

In the naive tree, each edge emenating from a node is labeled by a letter, which
identifies the next node along the path. The tree for the above string looks as
follows:

72

Start

A

AB

ABC

ABCA

ABCAB

ABCABD

ABCABDA

ABCABDAB

ABCABDABC

ABCABDABCE

ABCABDABCEA

ABCABDABCEA$

ABCE

ABCEA

ABCEA$

ABD

ABDA

ABDAB

ABDABC

ABDABCE

ABDABCEA

ABDABCEA$

A$

B

BC

BCA

BCAB

BCABD

BCABDA

BCABDAB

BCABDABC

BCABDABCE

BCABDABCEA

BCABDABCEA$

BCE

BCEA

BCEA$

BD

BDA

BDAB

BDABC

BDABCE

BDABCEA

BDABCEA$

C

CA

CAB

CABD

CABDA

CABDAB

CABDABC

CABDABCE

CABDABCEA

CABDABCEA$

CE

CEA

CEA$

D

DA

DAB

DABC

DABCE

DABCEA

DABCEA$

E

EA

EA$

A

B

C

A

B

D

A

B

C

E

A

$

E

A

$

D

A

B

C

E

A

$

$

B

C

A

B

D

A

B

C

E

A

$

D

A

B

C

E

A

$

E

A

$

C

A

B

D

A

B

C

E

A

$

E

A

$

D

A

B

C

E

A

$

E

A

$

73

Several notes about the tree:

• Any prefix can be found by starting at the root and traversing to a leaf
node following the edges labeled by the next character in the string.

• Nodes are labeled for convenience, giving the path followed to arrive at
that node from the root.

• The terminal charachter $ must be included at the end of the string.
Otherwise, we would not know for sure whether a suffix completes at a
given node. Consider the node A. Without the terminal character, we
would not know that there is a suffix which ends there. Instead, we see a
path labeled with $, and can know conclusively. The exact character used
doesn’t matter all that much, so long as we can guarantee it is a character
not contained in the input string.

• As a consequence of the previous bullet, for a string length N , there are
exactly N leaf nodes.

The tree can be constructed by looping over each suffix of the input string
and traversing the existing tree. If, when at a node, there is no path leaving the
node with the next letter of the string, we create a new node, and add the edge
before traversing to it. As this is not a binary tree, instead of having left and
right children, we have potentially one edge for each letter of the alphabet and
the terminal character. We can store the node at the other end of these edges
in either a map, or an array, indexed using the ASCII character.

Even though this tree is correct and could be used to solve the prior listed
problems, it will never be able to do so, nor even be constructed, in linear time.
There are simply too many nodes. Note the long branchless chains in the tree
which are repeated multiple times. It turns out, worst case, the number of nodes
in this tree is O(n2). This can be seen by constructing the tree for a string with
no repeated letters (say, ABCDEFGH).

Optimization 1: Compression

The first optimization involves creating fewer nodes. Namely, we observe that
instead of creating a node for each letter in the suffix, we might create nodes at
only places where there is a split in the tree. In such a situation, an edge may
contain multiple letters, instead of just a single one, even if we still index it by
only the first letter. Lets see how the creation of such a tree works.

74

Start

ABCABDABCEA$

ABCABDABCEA$

Figure 9.1: Step 1: We add the first suffix to the tree. There will necessarily be
no splits in the tree, so there will be a single edge with the entire suffix leading
to the only leaf node.

Start

ABCABDABCEA$ BCABDABCEA$

ABCABDABCEA$ BCABDABCEA$

Figure 9.2: Step 2: We add the second suffix to the tree. There is no overlap
with the previous edges, so it ends up juts being a single edge.

Start

ABCABDABCEA$

BCABDABCEA$

CABDABCEA$

ABCABDABCEA$

BCABDABCEA$

CABDABCEA$

Figure 9.3: Step 3: The same process as step 2.

75

Start

AB

ABCABDABCEA$ ABDABCEA$

BCABDABCEA$

CABDABCEA$

AB

CABDABCEA$

DABCEA$

BCABDABCEA$

CABDABCEA$

Figure 9.4: Step 4: When adding the suffix ABDABCEA$, we see that an edge
beginning with A already exists at the root. So we compare the letters in that
edge with our suffix until we find a difference. When we compare the C in
the edge with the D in the new suffix, we find they differ. We create a new
node at the point where they differ, and create two new edges. Note that if we
happen to come across an intermediate node while in the process of comparing,
we simply procress down the appropriate edge from that node based on the next
character, as will be the case when we insert ABCEA later. We will compare A
and B, arrive at a node, then progress down the CABD... edge to compare the
remaining letters.

As we’ve now seen how to add new suffixes, we’ll skip to the completed,
compressed tree.

76

Start

A

AB

ABC

ABCABDABCEA$

ABCEA$

ABDABCEA$

A$

B

BC

BCABDABCEA$

BCEA$

BDABCEA$

C

CABDABCEA$

CEA$

DABCEA$

EA$

A

B
$

C
DABCEA$

ABDABCEA$

EA$

B

C
DABCEA$

ABDABCEA$

EA$

C

ABDABCEA$

EA$

DABCEA$

EA$

Figure 9.5: The completed, compressed suffix tree. Note that it contains all the
same suffixes as the previous suffix tree, but with far fewer nodes.

After the creation of this compressed form, we note that there are far fewer
nodes, but exaclt how many fewer? As noted before, we have exactly N leaf
nodes. We note here, though, that every internal node, we create a subtree
which contains at least two leaf nodes which were not previously in the same
subtree. This limits the total number of interior nodes to a maximum of N − 1,
limiting the total number of nodes in the tree to 2 ∗ N − 1, which is O(N): a
reduction by a factor of N from the uncompressed form, even in the worst case.

Despite this, the construction still may be too slow. Consider, again, the
worst-case tree with all unique letters. In that case, we are still left with O(N)
branches, which each must store O(N) characters, making even the storing the
of the edge data super-linear.

Optimization 2: Indexing

The next optimization involves avoiding the cost of copying and storing the
multitude of characters on each edge. We notice that the string on each edge
comprises of some substring of our input. Given that, instead of storing the
substring itself, we can simply store a pair of indices pointing to the input

77

string. These indices indicate the start and end of the substring which represents
that edge. If multiple such substrings exist, any may be used. We reprise the
compressed tree, now including such indices. The substring itself is noted only
for clarity, it is not copied or stored with the edge.

Start

A

AB

ABC

ABCABDABCEA$

ABCEA$

ABDABCEA$

A$

B

BC

BCABDABCEA$

BCEA$

BDABCEA$

C

CABDABCEA$

CEA$

DABCEA$

EA$

0,1
A

1,2
B

11,12
$

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

1,2
B

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

2,3
C

3,12
ABDABCEA$

9,12
EA$

5,12
DABCEA$

9,12
EA$

Figure 9.6: Same as before, but with the stored indices. The substrings those
indices resolve to, as well as the substrings representing each node, are only
presented for clarity.

Optimization 3: Per character, not per suffix

Up until now, we have dodged a fundamental issue with our methods in con-
structing the tree. By iteratively adding each distinct suffix of our input to a
tree, we run into a wall. Fundamentally, there are O(N) suffixes, and in the
worst case, each one may require O(N) comparisons (consider a highly repeti-
tive string such as AAAAAAAAAAB to see why this is the case). In order to
construct a tree in linear time, we must find a way to do so in a small number
of, if not single pass over the input string.1

1There are algorithms that use a suffix-first approach, but they are much more conceptually
difficult. See: Weiner’s algorithm.

78

The key intuition is that instead of iterating over each suffix and adding it
to the tree, we can build the suffix tree one character at a time. We will create
a complete suffix tree for the substring encompassing the first character, then
we will extend the input string one character at a time, and attempt to updatte
the tree to accommodate it. Then, once we have reached the $ character, we
will have successfully build the suffix tree for the complete input.

We will present a few iterations of building a tree with this optimization,
but will not construct the full tree, as we’ll see there are a few other ”problems”
we must solve in order to form a complete algorithm.

Here’s how it works in practice.

Start

A

0,1
A

Figure 9.7: Step 1: After processing the first A, we have the single substring
that ends at that character encoded in the tree. [A]

In order to add the second character, B, we must know at what nodes ter-
minated a substring for the previous character. After the first step, this is only
node A, which is noted in square brackets in the caption. We’ll refer to these as
open substrings. While we represent these based on their label here, this could
feasibly use any pointer to the node, such as an index.

Start

AB B

0,2
AB

1,2
B

Figure 9.8: Step 2: In order to process the first B, we add a B to the open
substring from the previous step by changing the label from (0,1) to (0,2) to
indicate the extrac character, and then add B from the root. We now have two
open substrings. [AB,B]

79

Start

ABC BC C

0,3
ABC

1,3
BC

2,3
C

Figure 9.9: Step 3: Similar to step 2, we update (0,2) to (0,3), and then update
(1,2) to (1,3), and add the new open substring to the root. [ABC,BC,C]

We’ll pause here.
While we’ve demonstrated creating the tree by character, instead of by suffix,

we also see that the construction still has a flaw that will ultimately force us
into super-linear time. As we add each character, we increment the number of
open strings, and for each new character, we have to update the number of open
strings. We note that this most commonly results in incrementing the ”end”
value of each of the applicable edge labels. Without finding a way to eliminate
these updates, we will be unable to reach linear time.2

Optimization 4: Open Ended Substrings

As we were updating the open substrings, we note that the value we were up-
dating the labels to always ended up being to the same index, representing a
substring ending at the character we just added. Instead of using a fixed value
for the end index of these open substrings which we must increment each step,
we can instead use a floating value which simply represents a substring ending
at whatever the previous character we added to the tree. We will use a ? to
represent this floating index.

Start

A

0,?
A

Figure 9.10: Step 1: After processing the first A, we have the single substring
that ends at that character encoded in the tree. Note that we indicate its end
with the floating index to indicate this edge is still open.

2If you’re following the formal description of Ukkonen’s algorithm, this is Rule 1.

80

Start

AB B

0,?
AB

1,?
B

Figure 9.11: Step 2: To add the B, we only added a new open substring to the
root. Note that the labels on the edge (0,?) did not change at all, but the value
represented by that edge did, since the index which ? represents incremented
by one. We have implicitly updated 2 edges worth of substrings while only
physically updating one of them.

Start

ABC BC C

0,?
ABC

1,?
BC

2,?
C

Figure 9.12: Step 3: Similar to step 2, we have only physically added a single
edge to the tree, but the remaining open edges have been implicitly updated
due to the floating endpoint.

We now would run into an issue when we attempt to add the second A. The
A edge already exists, and without ”cheating” we won’t know if we are supposed
to split the edge there or not, as it ends up depending on future characters. In
order to allow us to efficiently cope with this, we use a non-commital suffix.

Optimization 5: Non-Committal Suffixes

The fundamental problem when we inserted the second A into the suffix tree
was that we did not know if the insertion of the A would cause the tree to split.
If the next character is the same, we do not want to split, but if it is not, we
must. However, we cannot look arbitrarily ahead in the word without violating
our per-character paradigm. We must come up with a way to encode that we
have an open substring which may or may not result in a split in the edge while
also not looking ahead in the string.3

This is accomplished by creating a special open suffix, a pointer into the
tree indicating the point on a specific edge we will attempt to insert the next

3Splitting an edge in this case is rule 2 in the canonical description of Ukkonen’s algorithm.

81

character. This is called the active point4, and is represented using 3 values:

• the parent node of the edge containing the active point

• the character representing the specific edge from the parent node which
contains the active point

• the specific character on that edge which is the active point, represented
by the number of characters along that edge the active point occurs

When we reach a character we are attempting to insert into the tree, we first
check if the character succeeding the active point matches. If it does, we move
the active point, otherwise, we split the edge in question. The reset point is
initialized to point at the root node, covering the cases when we have not seen
repeat letters.

Start

A

start, ,0

0,?
A

Figure 9.13: Step 1: Inserting the A is identical to before, however we note that
we now have an active pointer pointing to the start node.

Start

AB B

start, ,0

0,?
AB

1,?
B

Figure 9.14: Step 2: Inserting the B is also identical to before.
4The active point allows us to encode rule 3 from the canonical description of Ukkonen’s

algorithm

82

Start

ABC BC C

start, ,0

0,?
ABC

1,?
BC

2,?
C

Figure 9.15: Step 3: Inserting the C is also identical to before.

Start

ABCA BCA CA

start,A,1

0,?
ABCA

1,?
BCA

2,?
CA

Figure 9.16: Step 4: When we go to insert the second A, we note that we already
have a path for A. We don’t know, however, whethether we will have to split the
edge (without cheating by looking ahead). We modify the active point to the
A on the appropriate edge, which is the first character on the A branch coming
from the start node.

So far so good. All 4 of the suffixes are either represented by open edges, or
the active point.

Start

ABCAB BCAB CAB

start,A,2

0,?
ABCAB

1,?
BCAB

2,?
CAB

Figure 9.17: Step 5: When we go to insert the second B, we see that the next
character after the active point is already a B, so we simply move the active
point, in this case, by incrementing the number to 2 (to indicate the second
character on the A edge from start).

Despite seemingly going swimmingly, we find we have a problem. Unlike
after step 4, we no longer have all the necessary suffixes in the tree. We have,
of course, the 3 open edges and the active point, but we note that none of these
constructs encode the suffix B. The middle edge has BCAB, but no provision
for the single character. We could add a second active point, but we can see

83

how that may become unweildy. Instead, we will simply cache that we haven’t
added it, represented by ”how many suffixes haven’t we added yet”.5

Start

ABCAB BCAB CAB

0,?
ABCAB

1,?
BCAB

2,?
CAB

Active Point: Start,A,2
Missing Suffixes: 2

[AB,B]

Figure 9.18: Step 5 (take 2): We now have successfully included all suffixes,
either on our open edges, or the missing suffixes count. The active point lets us
know where the first missing suffix would go. Note that we do not actually save
the list of suffixes, only the count.

When we insert the D, we will find a mismatch at the next character of
the active point. Remember that the purpose of the active point was to delay
splitting an edge until we knew we needed to. So, now that we know we will
need to split the edge, we can proceed to do so, and the active point resets back
to the start. Now that the active point is not being used, we can proceed to
insert the missing suffixes, which have expanded to include the D.

Start

AB

ABCABD

ABD

BCABD CABD

0,2
AB

2,?
CABD

5,?
D

1,?
BCABD

2,?
CABD

Active Point: Start, ,0
Missing Suffixes: 2

[BD,D]

Figure 9.19: Step 6 part 1: We’ve split the edge, reset the active point, and
noted the missing suffixes. Note that we simply increase the missing suffix
count, and the last two suffixes are BD and D; we don’t actually store those two
suffixes, however, so there is no cost to update them. Note that all suffixes are
accounted for with the four open edges, and 2 missing suffixes.

We now proceed to add the missing suffixes, as the active point is no longer
5Also notice that all the ”missing” suffixes are actually in the tree already, they just don’t

have a leaf node. These are known as implicit.

84

in use. Starting with BD:

Start

AB

ABCABD

ABD

B

BCABD

BD

CABD

0,2
AB

2,?
CABD

5,?
D

1,2
B

2,?
CABD

5,?
D

2,?
CABD

Active Point: Start, ,0
Missing Suffixes: 1

[D]

Figure 9.20: Step 6 part 2: We traversed down the tree to insert BD, and found
a place to split an edge, so did so.

Start

AB

ABCABD

ABD

B

BCABD

BD

CABD

D

0,2
AB

2,?
CABD

5,?
D

1,2
B

2,?
CABD

5,?
D

2,?
CABD 5,?

D

Active Point: Start, ,0
Missing Suffixes: 0

[]

Figure 9.21: Step 6 part 3: We traverse down the tree to insert the next missing
suffix, D, but find we already don’t have an outgoing edge from the root, so
insert it. As there are no longer any missing suffixes, we proceed to step 7.

85

Start

AB

ABCABDA

ABDA

B

BCABDA

BDA

CABDA

DA

0,2
AB

2,?
CABDA

5,?
DA

1,2
B

2,?
CABDA

5,?
DA

2,?
CABDA 5,?

DA

Active Point: Start,A,1
Missing Suffixes: 1

[A]

Figure 9.22: Step 7: We are inserting an A, and it already exists, so we simply
move the active point.

Start

AB

ABCABDAB

ABDAB

B

BCABDAB

BDAB

CABDAB

DAB

0,2
AB

2,?
CABDAB

5,?
DAB

1,2
B

2,?
CABDAB

5,?
DAB

2,?
CABDAB 5,?

DAB

Active Point: AB, ,0
Missing Suffixes: 2

[AB,B]

Figure 9.23: Step 8: We are inserting the B, and it already exists, but the active
point reaches the end of an edge, so we update it to point to the node at the
end of that edge. Note that we have also recorded that we are missing a suffix
again.

86

Start

AB

ABCABDABC

ABDABC

B

BCABDABC

BDABC

CABDABC

DABC

0,2
AB

2,?
CABDABC

5,?
DABC

1,2
B

2,?
CABDABC

5,?
DABC

2,?
CABDABC 5,?

DABC

Active Point: AB,C,1
Missing Suffixes: 3

[ABC,BC,C]

Figure 9.24: Step 9: We are inserting the C, and we can accommodate this by
simply moving the active point and noting the extra missing suffixes.

Start

AB

ABC

ABCABDABCE

ABCE

ABDABCE

B

BCABDABCE

BDABCE

CABDABCE

DABCE

0,2
AB

2,3
C

3,?
CABDABCE

9,?
E

5,?
DABCE

1,2
B

2,?
CABDABCE

5,?
DABCE

2,?
CABDABCE 5,?

DABCE

Active Point: Start, ,0
Missing Suffixes: 3

[BCE,CE,E]

Figure 9.25: Step 10 part 1: We are inserting the E, which does not match
the character succeeding the active point, so we must split the edge, return the
active point back to the root, then work on inserting the missing suffixes.

87

Start

AB

ABC

ABCABDABCE

ABCE

ABDABCE

B

BC

BCABDABCE

BCE

BDABCE

CABDABCE

DABCE

0,2
AB

2,3
C

3,?
CABDABCE

9,?
EA

5,?
DABCE

1,2
B

2,3
C

5,?
DABCE

3,?
ABDABCE

9,?
EA

2,?
CABDABCE 5,?

DABCE

Active Point: Start, ,0
Missing Suffixes: 2

[CE,E]

Figure 9.26: Step 10 part 2: We traverse down the tree and insert suffix BCE

Start

AB

ABC

ABCABDABCE

ABCE

ABDABCE

B

BC

BCABDABCE

BCE

BDABCE

C

CABDABCE

CE

DABCE

0,2
AB

2,3
C

3,?
CABDABCE

9,?
EA

5,?
DABCE

1,2
B

2,3
C

5,?
DABCE

3,?
ABDABCE

9,?
EA

2,3
C

3,?
ABDABCE

9,?
E

5,?
DABCE

Active Point: Start, ,0
Missing Suffixes: 1

[E]

Figure 9.27: Step 10 part 3: We traverse down the tree and insert suffix CE.

88

Start

AB

ABC

ABCABDABCE

ABCE

ABDABCE

B

BC

BCABDABCE

BCE

BDABCE

C

CABDABCE

CE

DABCE

E

0,2
AB

2,3
C

3,?
CABDABCE

9,?
EA

5,?
DABCE

1,2
B

2,3
C

5,?
DABCE

3,?
ABDABCE

9,?
EA

2,3
C

3,?
ABDABCE

9,?
E

5,?
DABCE

9,?
E

Active Point: Start, ,0
Missing Suffixes: 0

[]

Figure 9.28: Step 10 part 4: We traverse down and insert the final suffix E, and
can proceed to step 11.

Start

AB

ABC

ABCABDABCEA

ABCEA

ABDABCEA

B

BC

BCABDABCEA

BCEA

BDABCEA

C

CABDABCEA

CEA

DABCEA

EA

0,2
AB

2,3
C

3,?
CABDABCEA

9,?
EA

5,?
DABCEA

1,2
B

2,3
C

5,?
DABCEA

3,?
ABDABCEA

9,?
EA

2,3
C

3,?
ABDABCEA

9,?
EA

5,?
DABCEA

9,?
EA

Active Point: Start,A,1
Missing Suffixes: 1

[A]

Figure 9.29: Step 11: Inserting the final A is simply a move of the active point.

89

Start

A

AB

ABC

ABCABDABCEA$

ABCEA$

ABDABCEA$

A$

B

BC

BCABDABCEA$

BCEA$

BDABCEA$

C

CABDABCEA$

CEA$

DABCEA$

EA$

0,1
A

1,2
B

11,12
$

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

1,2
B

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

2,3
C

3,12
ABDABCEA$

9,12
EA$

5,12
DABCEA$

9,12
EA$

Active Point: Start, ,0
Missing Suffixes: 0

[]

Figure 9.30: Step 12: Inserting the final $, that terminal character does not
match the character folling the active point, so we split the edge and reset the
active point to the start node. The tree is now complete. Note: If we so chose,
we could insert a $ node coming off the start node. We convert all ? to a ”real”
value for completenes.

The algorithm is correct and seems to be efficient in how it builds the tree.
There is one issue, however, which prevents linear time. In the stages where we
inserted the missing suffixes, we had to traverse down the tree to insert each
suffix individually. As there are O(N) potential missing suffixes to insert, and
each may take O(N) comparisons, our runtime is still quadratic in the worst
case.

Optimization 6: Suffix Links

In order to address the problem of inserting the missing suffixes, we first take
note of some significant similarities in different regions of the tree.

90

Start

A

AB

ABC

ABCABDABCEA$

ABCEA$

ABDABCEA$

A$

B

BC

BCABDABCEA$

BCEA$

BDABCEA$

C

CABDABCEA$

CEA$

DABCEA$

EA$

0,1
A

1,2
B

11,12
$

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

1,2
B

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

2,3
C

3,12
ABDABCEA$

9,12
EA$

5,12
DABCEA$

9,12
EA$

Figure 9.31: There is a ”blue” subtree of 5 nodes which contains identical edges
occurring 2 times, and a ”green” subtree of 3 nodes which occurs 3 times.

In the previous subsection, we note that whatever operation we ended up
taking in the AB subtree, we later ended up taking in the B subtree. In step
6, we split the ABCAB edge, then immediately made the same split in the
B subtree. In step 10, we split the ABC subtree, then immediately split the
equialent node in the BC subtree and C subtree.

By defining the proper relationship between these similar subtrees, we can
avoid the previous issue of having to traverse the entire tree while inserting
missing suffixes. These relationships are known as suffix links. When we split
an edge to create a new leaf node, we remember the internal node created at
the split, and if we create another leaf node during this step, we draw a suffix
link from the ”remembered” internal node to the equivalent one. Then, in
subsequent steps, if an edge we split comes from a node which has a suffix link,
instead of resetting the active point to the root, we instead follow the suffix
link and start our traversal there. Suffix links connect the similar subtrees we
observe, and avoid us having to traverse from the root down a particular subtree
more than once when inserting missing suffixes.

A bit more formally, lets consider a suffix which creates a split on an edge,

91

and thus new internal and leaf nodes: αβX, where α is some character, β is the
substring after α until the newly created internal node, and X is the character
forcing the split. Assuming β is non-empty, then there will end up being a suffix
link from node αβ to node β. Note that as we are inserting αβX, then, since
we are iterating character by character, then αβ and β will already be existing
paths in the tree. The node β will come from one of two sources:

1. Created in the next ”part”. This is the common case, and we draw the
suffix link when we create the node β, to split off the leaf node to βX

2. Already existing, and we draw the suffix link when we reach β in our
traversal to insert βX

Lets see it in action, starting at step 6, part 2. Remember that in step 6,
part 1, we had created an internal node AB, in order to add suffix ABD. We
know at this point that we will end up with a suffix link from node AB to node
B in the next part.

Start

AB

ABCABD

ABD

B

BCABD

BD

CABD

0,2
AB

2,?
CABD

5,?
D

1,2
B

2,?
CABD

5,?
D

2,?
CABD

Active Point: Start, ,0
Missing Suffixes: 1

[D]

Figure 9.32: Step 6 part 2: We traversed down the tree to insert BD, and found
a place to split an edge, so did so, creating node B. As noted above, we know
we will need a suffix link from AB to B, so we create it.

The suffix link we drew in the previous picture we node ends up being node
at the root of the two ”blue” subtrees from the previous figure. The implication
is that moving forward, every change which occurs in the AB subtree will also
end up occurring in the B subtree. This must be true as there are is no such
suffix ABX which does not also imply a suffix BX. Note that the inverse is not
true, as there may be a suffix BX which was not immediately preceeded by an
A.6 This explains why the suffix link is directed. We see the utility of the link
in step 10, and will demonstrate construction of the tree starting at that point.

6We will see an example of this shortly.

92

Start

AB

ABCABDABC

ABDABC

B

BCABDABC

BDABC

CABDABC

DABC

0,2
AB

2,?
CABDABC

5,?
DABC

1,2
B

2,?
CABDABC

5,?
DABC

2,?
CABDABC 5,?

DABC

Active Point: AB,C,1
Missing Suffixes: 3

[ABC,BC,C]

Figure 9.33: The tree after step 9.

Start

AB

ABC

ABCABDABCE

ABCE

ABDABCE

B

BCABDABCE

BDABCE

CABDABCE

DABCE

0,2
AB

2,3
C

3,?
CABDABCE

9,?
E

5,?
DABCE

1,2
B

2,?
CABDABCE

5,?
DABCE

2,?
CABDABCE 5,?

DABCE

Active Point: B,C,1
Missing Suffixes: 3

[BCE,CE,E]

Figure 9.34: Step 10 part 1: As with before, we split the edge to insert the E.
We note that as the newly created node is ABC, we will end up with a suffix
link to a node BC. Instead of resetting the active point to the suffix, however,
we note that the node the active point was using as a base has a suffix link,
and cause the active point to ”hop” to the location in the new subtree, where
as previously discussed, we will end up making the same edit.

93

Start

AB

ABC

ABCABDABCE

ABCE

ABDABCE

B

BC

BCABDABCE

BCE

BDABCE

CABDABCE

DABCE

0,2
AB

2,3
C

3,?
CABDABCE

9,?
EA

5,?
DABCE

1,2
B

2,3
C

5,?
DABCE

3,?
ABDABCE

9,?
EA

2,?
CABDABCE 5,?

DABCE

Active Point: Start, ,0
Missing Suffixes: 2

[CE,E]

Figure 9.35: Step 10 part 2: Several things happen in this part. As before, we
split the edge, since the E does not match the character following the active
point. We’ve now created node BC, which is the endpoint of the newly needed
suffix link. We also note that BC will end up needing a suffix link to a node C.
Lastly, as there is no suffix link coming out of the B node, we revert the active
point to the start. Note that the ndoes ABC and BC which now have a suffix
links are roots of two of the green subtrees.

94

Start

AB

ABC

ABCABDABCE

ABCE

ABDABCE

B

BC

BCABDABCE

BCE

BDABCE

C

CABDABCE

CE

DABCE

0,2
AB

2,3
C

3,?
CABDABCE

9,?
EA

5,?
DABCE

1,2
B

2,3
C

5,?
DABCE

3,?
ABDABCE

9,?
EA

2,3
C

3,?
ABDABCE

9,?
E

5,?
DABCE

Active Point: Start, ,0
Missing Suffixes: 1

[E]

Figure 9.36: Step 10 part 3: We traverse down the tree and insert suffix CE. As
with the previous part, the newly created node is the endpoint required for the
suffix link we needed, so we create it. Note that this has now linked all three
green subtrees.

95

Start

AB

ABC

ABCABDABCE

ABCE

ABDABCE

B

BC

BCABDABCE

BCE

BDABCE

C

CABDABCE

CE

DABCE

E

0,2
AB

2,3
C

3,?
CABDABCE

9,?
EA

5,?
DABCE

1,2
B

2,3
C

5,?
DABCE

3,?
ABDABCE

9,?
EA

2,3
C

3,?
ABDABCE

9,?
E

5,?
DABCE

9,?
E

Active Point: Start, ,0
Missing Suffixes: 0

[]

Figure 9.37: Step 10 part 4: We traverse down and insert the final suffix E, and
can proceed to step 11.

Steps 11 and 12 are identical to before.

Optimization 7: Fast Traversal

Again, while the algorithm seems efficient, there is one step which is still prob-
lematic: Traversing down the tree to find a split point. In the worst case, we
have to traverse O(N characters down from the root to find a split point. The
final optimization helps us do this more efficiently.

Critically, as noted before, we can notice that while we are manipulating the
active point, all the missing suffixes do exist in the tree, but do not yet have
associated leaf nodes. Further, any split which occurs does so just before the
final letter of the suffix we are inserting. Using these two facts, we can traverse
any edge in constant time. If we are at the root (or any node), trying to insert a
given string, and there is an edge that comes from that node which matches the
first character of the string, since we know that the string will be in the tree, we
can simply ”skip” to the next node without having to do a direct comparison.
The cases here are:

1. Edge is shorter than or same size as string: Move on to the next node at
the end of the edge, use edge labels to determine which character to look
at next in the string.7

7The edge labels are indices, so computing the length is simply substraction.

96

2. String is shorter than edge: We have found the location where we will
need to insert a split on this edge without having to explicitly perform
comparison

This traversal is used in both places we perform such a traversal: after we
have followed a suffix link, or after we mave moved the active point to the root.

9.5.2 Rough Proof of Linearity
We have a linear number of steps, and most elements during a step are constant
time. The only hang up is parts where we create a node, which may happen
multiple times during a step, and may involve a traversal, even if it is fast. The
total number of nodes in the tree is linear, so the actual creation is not ultimately
problematic, but ensuring we can find the location to create the node might be.
With all above optimizations, it can be shown that we only traverse a linear
total number of nodes for the entirety of the algorithm, so assuming we traverse
each edge in constant time with fast traversal, gets us linear time overall. The
number of traversals can be shown to be linear based on the fact that suffix
links (or ”resets to the root”) all change the tree depth of the current active
point by moving up at most one level towards the root. As such movements
only happen a linear number of times, the maximum number of nodes we can
”climb” the active point is linear, and the heigh of the tree is linear, so the
number of downward traversals must also be bound linearly.8

9.5.3 Implementation
The implementation of Ukkonen’s algorithm is frought with corner cases. Some
notes:

• The maximum number of nodes in the tree is 2 ∗ n. Therefore, we can
store each node in an array, indexed by the order the nodes are created.

• Each node must store outgoing edges indexed by the first character of
that edge. This can either be an array, if the alphabet size is small, or if
necessary, a map.

• Each outgoing edge must store two pieces of information, the start and
end index of the characters representing that edge.

• There are a significant number of corner cases, so any implementation
should be exceptionally well tested.9

• It is highly convenient to leverage the active point to store certain details
as we complete the algorithm The rules we will use are as follows:

8For the formal proof, check out Dan Gusfield’s book Algorithms on Strings, Trees, and
Sequences.

9And many free online resources on the subject mis critical corner cases

97

1. After a split, if the active node has a suffix link, simply change the
the active node to the destination node of the suffix link, leaving the
edge and length the same. If the new active edge is shorter than the
active length, immediately perform a fast traversal and update the
active point if necessary.10

2. After a split, if the active node has no suffix link, the active node
becomes the root, the active edge is the first character of the next
missing suffix we intend to insert, and the active length is the length
of the necessary traversal (i.e. one fewer than the length of the suffix
itself we are inserting next). If the new active edge exists and is
shorter than the active length, immediately perform a fast traversal
and update the active point if necessary. Note that this should only
occur if the active node represents a string which is length 1.

3. The above two rules still apply if the location where we insert the
leaf node was preexisting (i.e. the active length was 0), and we then
follow the suffix link, if any.

• We will have to keep track of the most-previously created node represent-
ing a string of length greater than 1, as it will necessarily be source node
of the next suffix link we create. This value should be empty by the end
of every step.

• If there is a most-previously created node saved, the destination of its
suffix link will always be the parent of the next leaf node created.

• In many implementations, the above two rules are generalized further, and
suffix links are drawn from even length-1 internal nodes back to the root.
In such a case, all interior nodes have a suffix link, eliminating some corner
cases.

• While we label each node in our figuers with the string it represents, the
nodes themselves should not, and do not need to store this information
explicitly. Nothing in the algorithm strictly depends on it, and doing could
force quadratic behavior.

• It is often customary to increase the missing suffixes count at the start
of a step, and account for that properly as the step goes on. This is an
implementation detail.

• It is also often customary at the start of a step to set the active edge to
the next character, if it is null.

• After constructing the tree, it is common to store some additional meta-
data, including length of the substring necessary to reach each node, index
where the suffix ending at each leaf node starts, or other postprocessing
information.

10This immediate update is known as canonicalization.

98

9.5.4 Complete Example
Now that all optimizations have been given, we will perform one more complete
example to demonstrate the algorithm. We will use the string BCBDABCABD$,
and will attempt to represent most of the implementation notes. We will not
draw explicit suffix links to the root, however.

Start

B

0,?
B

Active Point: Start, ,0
Missing Suffixes: 0

[]
Suffix Src: null

Figure 9.38: Step 1: Root does not have an edge B, so create it.

Start

BC C

0,?
BC

1,?
C

Active Point: Start, ,0
Missing Suffixes: 0

[]
Suffix Src: null

Figure 9.39: Step 2: Root does not have an edge C, so create it.

Start

BCB CB

0,?
BCB

1,?
CB

Active Point: Start,B,1
Missing Suffixes: 1

[B]
Suffix Src: null

Figure 9.40: Step 3: Root does have an edge B, so move the active point

99

Start

B

BCBD

BD

CBD

0,1
B

1,?
CBD

3,?
D

1,?
CBD

Active Point: Start,D,0
Missing Suffixes: 1

[D]
Suffix Src: null

Figure 9.41: Step 4 part 1: The D mismatches, create a new edge. As there is
no suffix link, the active point reverts to the root, where we adjust the active
edge to D, and subtract 1 from the acttive length. The new node B represents
a string of length 1, so we do not set it as the suffix src. Note: we would do so
if we intended to create suffix links to the root.

Start

B

BCBD

BD

CBD

D

0,1
B

1,?
CBD

3,?
D

1,?
CBD 3,?

D

Active Point: Start, ,0
Missing Suffixes: 0

[]
Suffix Src: null

Figure 9.42: Step 4 part 2: Root does not have active edge D, so create it.

100

Start

A B

BCBDA

BDA

CBDA

DA

4,?
A

0,1
B

1,?
CBDA

3,?
DA

1,?
CBDA 3,?

DA

Active Point: Start, ,0
Missing Suffixes: 0

[]
Suffix Src: null

Figure 9.43: Step 5: Root does not have an edge A, so create it.

Start

AB B

BCBDAB

BDAB

CBDAB

DAB

4,?
AB

0,1
B

1,?
CBDAB

3,?
DAB

1,?
CBDAB 3,?

DAB

Active Point: B, ,0
Missing Suffixes: 1

[B]
Suffix Src: null

Figure 9.44: Step 6: Root does have an edge B, so move the active point on
edge B, length 1. The length of the active edge matches the length of the edge
it points to, so move the active point to the next node, and adjust the edge and
length accordingly.

101

Start

ABC B

BCBDABC

BDABC

CBDABC

DABC

4,?
ABC

0,1
B

1,?
CBDABC

3,?
DABC

1,?
CBDABC 3,?

DABC

Active Point: B,C,1
Missing Suffixes: 2

[BC,C]
Suffix Src: null

Figure 9.45: Step 7: The active node does have an edge C, so move the active
point.

Start

ABCA B

BC

BCA

BCBDABCA

BDABCA

CBDABCA

DABCA

4,?
ABCA

0,1
B

1,2
C

3,?
DABCA

7,?
A

2,?
BDABCA

1,?
CBDABCA 3,?

DABCA

Active Point: Start,C,1
Missing Suffixes: 2

[CA,A]
Suffix Src: BC

Figure 9.46: Step 8 part 1: The A does not match the next character after the
active point. We split the edge at node BC. As BC is length greater than 1, we
set it as the suffix src. We know it will end up with a suffix link to a node C.
As the active node, B, has no outgoing suffix link, the active point reverts to
the root. The next suffix is CA, so the active edge is C, and the length is 1 (i.e.
we have to traverse to C (a string of length 1) to find where to insert leaf A).

102

Start

ABCA B

BC

BCA

BCBDABCA

BDABCA

C

CA

CBDABCA

DABCA

4,?
ABCA

0,1
B

1,2
C

3,?
DABCA

7,?
A

2,?
BDABCA

1,2
C

7,?
A

2,?
BDABCA

3,?
DABCA

Active Point: Start,A,0
Missing Suffixes: 1

[A]
Suffix Src: null

Figure 9.47: Step 8 part 2: We see that the active edge does exist from the
active node, and the length of that edge (7) is less than the active length (1).
We therefore have found our split location. We split the edge. We see that
there was a suffix src, so we draw the suffix link from BC to B. This new node
represents a string of length 1, so it is not set as the suffix src. The active node
remains at the root, and we update it for the next suffix to insert.

103

Start

ABCA B

BC

BCA

BCBDABCA

BDABCA

C

CA

CBDABCA

DABCA

4,?
ABCA

0,1
B

1,2
C

3,?
DABCA

7,?
A

2,?
BDABCA

1,2
C

7,?
A

2,?
BDABCA

3,?
DABCA

Active Point: Start,A,1
Missing Suffixes: 1

[A]
Suffix Src: null

Figure 9.48: Step 8 part 3: There is only the A remaining, which means there
is no traversal to do before inserting it (represented by the active length having
been 0). We therefore simply note that the activenode already an edge A, so
we simply move the active point.

104

Start

ABCAB B

BC

BCAB

BCBDABCAB

BDABCAB

C

CAB

CBDABCAB

DABCAB

4,?
ABCAB

0,1
B

1,2
C

3,?
DABCAB

7,?
A

2,?
BDABCAB

1,2
C

7,?
A

2,?
BDABCAB

3,?
DABCAB

Active Point: Start,A,2
Missing Suffixes: 2

[AB,B]
Suffix Src: null

Figure 9.49: Step 9: The next character, B, matches the character after the
active point, so we simply move it.

105

Start

AB

ABCABD

ABD

B

BC

BCABD

BCBDABCABD

BDABCABD

C

CABD

CBDABCABD

DABCABD

4,6
AB

5,?
CABD

8,?
D

0,1
B

1,2
C

3,?
DABCABD

7,?
A

2,?
BDABCABD

1,2
C

7,?
A

2,?
BDABCABD

3,?
DABCABD

Active Point: Start,B,1
Missing Suffixes: 2

[BD,D]
Suffix Src: AB

Figure 9.50: Step 10 part 1: The next character, D, does not match the character
after the active point. We split this edge. We note that AB as the suffix src,
as it will end up with a suffix link to B, and we update the active point to the
root, since we don’t have an outgoing suffix link to follow.

Start

AB

ABCABD

ABD

B

BC

BCABD

BCBDABCABD

BDABCABD

C

CABD

CBDABCABD

DABCABD

4,6
AB

5,?
CABD

8,?
D

0,1
B

1,2
C

3,?
DABCABD

7,?
A

2,?
BDABCABD

1,2
C

7,?
A

2,?
BDABCABD

3,?
DABCABD

Active Point: B,D,0
Missing Suffixes: 2

[BD,D]
Suffix Src: AB

Figure 9.51: Step 10 part 2: The active edge has a length shorter or equal to
the active length. We therefore move the active point to that node.

106

Start

AB

ABCABD

ABD

B

BC

BCABD

BCBDABCABD

BDABCABD

C

CABD

CBDABCABD

DABCABD

4,6
AB

5,?
CABD

8,?
D

0,1
B

1,2
C

3,?
DABCABD

7,?
A

2,?
BDABCABD

1,2
C

7,?
A

2,?
BDABCABD

3,?
DABCABD

Active Point: B, ,0
Missing Suffixes: 2

[BD,D]
Suffix Src: null

Figure 9.52: Step 10 part 3: We have found the location (B) in the tree where
we would add BD. We know this since our active length is 0. A node already
exists here, however, so there is no need to perform a split. We will draw our
suffix link from the suffix src, however.

107

Start

AB

ABCABD

ABD

B

BC

BCABD

BCBDABCABD

BDABCABD

C

CABD

CBDABCABD

DABCABD

4,6
AB

5,?
CABD

8,?
D

0,1
B

1,2
C

3,?
DABCABD

7,?
A

2,?
BDABCABD

1,2
C

7,?
A

2,?
BDABCABD

3,?
DABCABD

Active Point: B,D,1
Missing Suffixes: 2

[BD,D]
Suffix Src: null

Figure 9.53: Step 10 part 4: When we go to finally create the leaf, we find
node B already has an edge for D, so we simply move the active point, and are
complete with this step. It may seem unusual that after a split we do not end
up back at the root, but as with the original justification for non-committal
suffixes, we do not know if we will have to make a split or not without looking
ahead. As all suffixes are still properly tracked in either leaves or the missing
suffix list, we are all set.

Step 11 is the insertion of the terminal character $. As this section is already
too long with diagrams, the parts of step 11 are described here.

1. $ does not match the next character after the active point, so we split
the edge, creating node BD. We set BD as the suffix src. As there is no
outgoing suffix link from the ative node, the active point reverts to the
root with edge D and length 1.

2. There is an outgoing edge D from the root, and it is longer than the active
length 1. We split this edge to form node D, create the leaf node for $,
and draw the suffix link from our suffix src BD.

9.5.5 Usage
Now that we have created a suffix tree in linear time, we can discuss how to
solve the previously-listed problems.

Pattern Existence

The suffix tree does not simply contain all suffixes. A suffix only occurs if we
end a traversal at a leaf node. As any substring of an input must be the prefix

108

of the suffix starting at the same location, it must be found in the traversal
of the suffix tree towards the leaf node representing that suffix. Consider the
substring DAB. This substring is a prefix of DABCEA, which is a suffix of
ABCABDABCEA, and therefore is found in the trafersal towards that suffix’s
leaf node in the suffix tree.

So check if a pattern exists in a string, we can traverse the tree using the
pattern. If we are still traversing when we consume all the characters of the
pattern (i.e. we have not found a mismatch), the pattern must exist in the
string.

Start

A

AB

ABC

ABCABDABCEA$

ABCEA$

ABDABCEA$

A$

B

BC

BCABDABCEA$

BCEA$

BDABCEA$

C

CABDABCEA$

CEA$

DABCEA$

EA$

0,1
A

1,2
B

11,12
$

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

1,2
B

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

2,3
C

3,12
ABDABCEA$

9,12
EA$

5,12
DABCEA$

9,12
EA$

Location after traversing to DAB

Figure 9.54: We traverse to DAB and find it is represented on some edge in the
tree. Therefore we can declare it exists in the original string.

Finding All Instance of a Pattern

Every leaf node in the tree represents a suffix, and every suffix starts at a
different location. The number of times a pattern occurs in a string is equal to
the number of suffixes which start with that pattern. Therefore, the number of
times a pattern occurs in a string is equal to the number of leaf nodes below
the traversal to the pattern. For instance, AB occuurs three times in the input
string, and we see it has 3 leaf nodes below its traversal.

109

Start

A

AB

ABC

ABCABDABCEA$

ABCEA$

ABDABCEA$

A$

B

BC

BCABDABCEA$

BCEA$

BDABCEA$

C

CABDABCEA$

CEA$

DABCEA$

EA$

0,1
A

1,2
B

11,12
$

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

1,2
B

2,3
C

5,12
DABCEA$

3,12
ABDABCEA$

9,12
EA$

2,3
C

3,12
ABDABCEA$

9,12
EA$

5,12
DABCEA$

9,12
EA$

Figure 9.55: The subtree below AB is highlighted. Note there are 3 leaf nodes,
representing the 3 locations of AB in the input string.

We can identify the leaf nodes with a simple BFS from the location of the
pattern in the tree. Note that there at most 2 ∗N nodes, so this is sufficiently
efficient. If multiple lookups are required, the number of leaf nodes could be
precomputed for all nodes in the tree.

If we must recover the actual locations of the pattern, we can note the total
length of the suffix of each leaf node we reach in our BFS traversal, which tells
us where that suffix, and thus the searched pattern, starts. This is unnecessary
if we have previously labeled all leaf nodes with their start index.

Longest Repeated Substring

Using similar rules to above, we can determine the longest repeated substring.
Note again that the number of leaf nodes below a given point in the tree repre-
sent the number of times that substring occurs. Therefore, the longest repeated
substring is the deepest node in the tree which has at least two leaf nodes (i.e.
the deepest internal node). This can be done in a single BFS of the tree.

110

Longest Common Substring

The longest common substring between two input strings is equivalent to the
longest repeated substring in the concatenation of those two strings which does
not cross the boundary between them, and where the two instances are on
opposite sides of the boundary. Example: The longest common substring of
ABCDAB and CDEABCDE is ABCD. The longest repeated substring in the
concatenation of those, ABCDABCDEABCDE, is ABCDE, but this requires us
to cross the boundary between the two strings, which is not allowed. ABCD is
the longest which does not cross that boundary.

We know how to compute the longest repeated substring, but how do we
ensure it adheres to the other conditions? This is solved by leaving a terminal
character in place between the two substrings. We can extend the idea of the $

character, and concatenate the two strings, but enusre they each have a unique
terminal: ABCDAB$CDEABCDE&. Now, the longest repeated substring is
guaranteed not to cross the boundary, as the $ terminal character is guaranteed
to only appear once in the concatenated string. If we were to build a suffix
tree of this and search, we would find a longest repeated substring, but how do
we also guarantee the two substrings occur on opposite sides of the boundary?
When comparing the two leaf nodes, we can simply check that start location of
thet two suffixes place them on either side of the boundary.

The high level algorithm is as follows:

1. DFS through the tree

2. Note the distance to the root as we perform the DFS

3. When returning from the recursion, note whether there are leaf nodes at
or below this node which are on the left side of the boundary, right side
of the boundary, or both.

4. Store the maximum depth node which was found which has ”both”

This concept of storing multiple strings with different terminal characters
together is known as a generalized suffix tree. Note that we can make its usage
slighlty more convenient by noting that every suffix starting in the first substring
will contain the entire second substring. We can truncate these extra characters
so that the leaf node terminates at the proper terminal character (either $ or &
in our example).

Longest Common Extension

Consider the following question: Given indices i and j in an input string, how
many consecutive characters following i and j match eachother? This is known
as the longest common extension (LCE) problem. Assuming we have identified
the leaf nodes corresponding to the suffixes starting at the two indices (which
we could do in a single pass of the tree if necessary), the LCE is the longest
common prefix of those two suffixes, which can be found trivially by walking
the tree from the root towards the two leaves until the path splits.

111

A single query of LCE is not particularly interesting (and could be done
without the suffix tree), however, the useful case is when we have many queries,
and for which a linear lookup may not be sufficient. To accommodate this, we
notice that the point where the path to the two leaves splits is the lowest common
ancestor of the two leaf nodes. We can utilize any standard LCA algorithm,
however the linear time processing with constant time lookup algorithm is most
appropriate here.

Longest Palindromic Substring

The longest palindromic substring is the longest substring within an input which
is a palindrome. This is equivalent to the longest common substring between
an input string and its reverse with an additional condition that the substring
occurs in a matching locations in the string and its reverse. To see why this
condition is necessary, consider the example ABADXYDABAZ. The longest
palindromic substring is ABA, however, the longest common substring between
this string, and its mirror (ZABADYXDABA), is ABAD, which is not a palin-
drome.

The issue is that ABAD and its mirror BOTH occur in the input string.
This causes us improperly match those two strings. When looking at the string
and its mirror, we note two things:

1. Each character has a ”pair” in the mirrored string. For a character at
index i, this is found at N − i− 1 in the mirror.

2. The common substrings in each the input and its mirror comprising the
candidate palindrome must contain the same characters.

3. the candidate ABAD contains characters 0,1,2,3 in the input, which should
be characers 10,9,8,7 in the mirror, but instead is found at 1,2,3,4, and
therefore is invalid.

Therefore the complete location condition is that if index i is the start of
the candidate of length l in the first string, then the start of the candidate in
the mirror must occur at index N − i− l. We see that candidate ABA, at index
0, length 3, properly occurs at 11 − 0 − 3 = 8 in the mirrored string, and is
therefore a solution. Using longest common substring, we can easily identify
the incorrect ABAD, but how can we impose the location condition to ensure
we only find ABA? One possible solution is to cache on each internal node the
start index of the leaf nodes you can reach from there for both the forward and
reverse string. Then, as we later traverse the tree, we can see if any pair of
those suffixes adhere to the location condition. The problem with this scenario
is that it is super-linear. Even storing the leaf node ”cache” on each node is
quadratic overall.

Instead of walking the tree, we can consider all possible mid-points of a
longest palindrome. There are exactly 2 ∗ N − 1: N odd centers, and N − 1
even. From each midpoint, we wish to determine the widest palindrome with

112

that midpoint. This is equivalent to finding the LCE of the substring going
to the right of the midpoint and the one going to the left. Assuming we have
constructed a suffix tree as described above (with the forward, and mirrored
string), then this is simply the LCE of the substring going to the right in the
forward string, and the substring going to the left in the mirrored string. We can
identify those two leaves, and execute the above LCE algorithm to determine
the widest palindrome centered at that point in constant time. Looping over all
possible centers gives us the necessary lienar time.

Minimum Rotation

The minimum rotation of a string is the least lexicographic substring of length
N which occurs if we allow said substring to ”wrap around” to the beginning if
we reach the end of the input. This is equivalent to the least such substring if
the input is concatenated to itself. Example: the minimum rotation of BACAA
is AABAC, which is also the longest length 5 substring in BACAABACAA.

Rotations Lexicographic Order
BACAA 4
ACAAB 3
CAABA 5
AABAC 1
ABACA 2

Therefore, if we construct a suffix tree of such a concatenation, we can follow
a path from the root, along the least lexicographic edge which comes from each
node, until we have found a substring which is N characters long. Note that
we are guaranteed not to get ”stuck” in a branch with not enough characters,
as every suffix of fewer than N characters also has a ”partner” with N more
characters, and therefore there must be somewhere to traverse. (e.g. suffix AA
has a partner AABACAA. Suffix CAA has a partner CAABACAA).

9.5.6 Suffix and LCP Array

113

