
Chapter 9

Strings

9.1 Pattern Matching
9.1.1 Z Function
The Z function1 of a given index i in a string is the longest substring starting
at i which is a prefix of the string itself. More simply, if x = Z(i), then the first
x characters starting at i are identical to beginning of the string, but no more.2

Let’s consider the Z function computed over the string ABCABDABCAB-
CABD. Boxes are drawn arond the substrings matching the Z value, which all
match the beginning of the string exactly. These are known as Z boxes.

A B C A B D A B C A B C A B D

-1 0 0 2 0 0 5 0 0 6 0 0 2 0 0

9.1.1.1 Applications

While the utility of such a function may seem esoteric, it is useful both for a few
specific applications, some fundamental concepts it exposes, and the simplicity
of its implementation, which we will see shortly.

• Finding the longest common extension of any index with the start of the
string. This is the definition of the Z function.

• Finding the longest prefix of a second string starting at any index in a
given string. This is accomplished by concatenating the two strings with
a terminal character which appears in neither of the other strings. More
clearly, if we wish to find the longest prefix of a string T which occurs

1As described in Dan Gusfield’s book Algorithms on Strings, Trees, and Sequences as
fundamental preprocessing of a string.

2This is exactly the longest common extension of 0 and i in the string which is discussed
more generally later in this chapter.

270

at any index in another string S, we could create a new string T$S, and
compute the Z function over that new string. Note that the $ character
ensures no Z value exceeds the length of T , since no character in S can
match the $.

• Finding all occurrences of a string T in S. Similar to the above, we
concatenate with a separator $ and look for any Z value which is exactly
the length of T .

9.1.1.2 Implementation

Trivially, we could compute the Z values in O(n2) time using a brute force
approach. However, with some clever rules, we can reduce this. From a high
level, we will compute the Z values in order, and remember some infromation
about previously found Z boxes that enable us to quickly compute future Z
values using the following rules.

1. Rule 1: If the current index is not found in any known Z box, compute
the Z value directly. If we find a Z box, note its left and right endpoints.
This rule would cause us to find the Z boxes as indices 3 and 6 in the
earlier string.

2. Rule 2: If we are in a Z box, we know that the Z box is duplicated exactly
at the start of the string. Look up the Z value at the corresponding index
in the beginning of the string.

(a) Rule 2.1: If the Z value at this corresponding index would keep us
within our current Z box, take it as the Z value for the current index.
We see this rule apply at index 12.

A B C A B D A B C A B C A B D

-1 0 0 2 0 0 5 0 0 6 0 0 2 ? ?

Figure 9.1: The Z value at the corresponding A is 2, so we remain inside the
Z box. This means the later A also has a Z value of 2. Note that this must be
true, as we know the solid and dashed boxes must be exact copies of eachother,
so we could not have a larger Z value in the later Z box than we had in the
beginning, so long as the Z value doesn’t extend past the bounds of that box.

(b) Rule 2.2: If the Z value at this corresponding index extends to or past
the bounds of the Z box, we cannot rely on 2.1, since more characters
might match. We use brute force to examine further characters past
the current Z box to find the first mismatch. We then update the

271

current Z box to the one further to the right, since that encapsulates
the most current information we have. We see this rule apply at
index 9.

A B C A B D A B C A B C A B D

-1 0 0 2 0 0 5 0 0 6 ? ? ? ? ?

Figure 9.2: The Z value at the corresponding A is 2, but this aligns with the
end of the current Z box, so there could be further characters which match. We
perform this comparison at the C following the solid Z box, and the correspond-
ing character at the beginning of the string, the C at index 2. We find we match
an additional 4 characters, making our total Z value 2 + 4 = 6. We record the
new value, and move to the newer, dotted, Z box for all future lookups.

We note that by using these rules, we always track the Z box with the right-
most endpoint that we know about so far. More critically, we note that we only
perform a comparsion within a Z box a single time, when we are creating that
Z box, and a comparison against a given letter in the string either is part of the
creation of a Z box (so that it is never compared against again), or it causes us
to complete the computation of the Z value for a given index. This guarantees
us O(n) overall time to compute the Z array.

A compact implementation could be as follows.

Listing 9.1: C++
vector<int> zfunc(string s){

vector<int> z(s.length());
int l=-1,r=-1; // current z-box
for(int i=1;i<s.length();i++){

if(r==-1){ // Rule 1
while(s[z[i]]==s[i+z[i]])z[i]++; // abuse z[i] as our pointer.
l=i;
r=l+z[i];

}else{
z[i]=z[i-l]; // Rule 2
if(z[i]>=r-i) {// Special handling for Rule 2.2

while(s[z[i]]==s[i+z[i]])z[i]++;
l=i;
r=l+z[i];

}
}

}
return z;

}

272

9.1.2 Knuth-Morris-Pratt
Knuth-Morris-Pratt (KMP) is one of the more well-known algorithms for iden-
tifying instances of a fixed pattern in a string. Most languages have a built-in,
highly-performant way to perform this operation. Further, other algorithms are
simpler (such as the above Z-func) or more performant (such as Boyer-Moore).
So why is KMP presented here? The method used for KMP is very power-
ful, and while string matching cna be done in other ways, the method backing
KMP can be extended to solve more difficult problems (such as matching mul-
tiple patterns). For this reason, it is essential to understand KMP so that the
more complex algorithms can be understood.

9.1.2.1 Intuition

First, observe the naive way in which we might match a pattern to a string. We
consider the pattern ABABC, and an text ABCABABABC. We’ll attempt to
align the pattern and the text at every position, and check if there is a match:

Listing 9.2: C++
void naive_match(string t,string p){

for(int i=0;i<=t.length()-p.length();i++){ //all alignments of p in t
bool match=true;
for(int j=0;j<p.length();j++){ //check all characters

if(p[j]!=t[i+j]){
match=false;
break;

}
}
if(match)cout<<i;

}
}

We can observe how the algorithm progresses. The failed comparison in each
loop is highlighted.

A B C A B A B A B C
A B A B C

Figure 9.3: i==0

A B C A B A B A B C
A B A B C

Figure 9.4: i==1

273

A B C A B A B A B C
A B A B C

Figure 9.5: i==2

A B C A B A B A B C
A B A B C

Figure 9.6: i==3

A B C A B A B A B C
A B A B C

Figure 9.7: i==4

A B C A B A B A B C
A B A B C

Figure 9.8: i==5, a match is found

Examining alignment 0, we successfully compared two characters before we
failed and mvoed to alignment 1 and performing a further comparison. The
second character compared at alignment 0, or in any alignment where we match
at least two characters, is B. More importantly, that second character is not
the first character in the pattern, A. Therefore we can conclude if we ever
match the first two characters in an alignment, the pattern will always fail in
the subsequent alignment. We see this when i=0, implying we cannot match
at alignment 1, and we also see this when i=3, implying we cannot match at
alignment 4.

The fundamental intuition behind KMP is that we can leverage informa-
tion from comparisons in previous alignments to ”skip” future alignments. By
skipping enough alignments and efficiently computing which alignments can be
skipped, we can achieve linear overall time.

The algorithm occurs in two large steps:

• Pre-process the pattern, producing a table mapping the location of a
comparison failure to the next possible alignment which could potentially
match. For instance, this table would map a failure on the second char-
acter in the pattern to the alignment two ahead.3

3Note early on that a failure on the k-th character does not imply we will always move k
ahead. This is demonstrated by a failure on the last character of the example pattern, which
only allows us to skip two ahead.

274

• Align the pattern with the first position in the target text and perform a
character by character comparison. When that comparison is complete,4
use the table to determine the next alignment and where in the alignment
to resume comparison.

9.1.2.2 Preprocessing: Defining the Overlap Function

The preprocessing table indicates how far we can shift the pattern depending
on how far into the pattern a miscompare occurs. We want this shift to be
as far as possible (to limit comparisons) while also ensuring we do not miss
any potential matches. Our goal will be to ensure once we have successfully
compared a character in the text, to never compare that character again.5

In order to meet the last criterion, the following must be true. Consider only
the part of the pattern which matched. After the shift, the overlapping parts of
the pattern must match. If there is a chance they do not match, then we would
have to compare characters with our text which we had previously successfully
compared.6

Consider the pattern ABCDABCE, and a text ABCDABCXXX. We show
the first alignment, and the next possible alignment, showing that the over-
lapping parts of the pattern must match. Note that such an overlap does not
guarantee the pattern will match at that alignment; it is a necessary but not
sufficient criterion.

A B C D A B C X X X
A B C D A B C E

A B C D A B C E

Figure 9.9: We successfully compared the first 7 letters of the pattern and text
with a dashed line indicating the end of that succsessful comparison. In order to
ensure we never have to compare any of those 7 letters of the text again, we must
guarantee the overlapping parts of any future alignment (up to the comparison
failure) are equal. We show the next future alignment with a box around that
overlap. Any lesser shift results in miscompares to the left of the dashed line.
Note that even though the last character of the pattern also overlaps after the
shift, it is not considered as it is past the dashed line of furthest successful
comparison, and thus does not need to match in order to fulfil the criterion.

We can state the overlap-match more formally:

Let l be the maximum match of the patern at some index, and
P0,l be the sub-pattern representing that match. If P0,l is shifted by

4either with a successful match or a miscompare
5This will ultimately enable us to prove linear bound.
6violating the criterion we are seeking to meet

275

k and compared against P0,l itself, then the overlap matches only if
P0,l−k is the same as Pk,l. The suffix of the sub-pattern must be a
prefix.

In order to ensure we do not accidentally skip a potential match, we will
seek to find the minimum shift, therefore the maximum amount of overlap, and
ultimately the longest suffix of the sub-pattern which is also a prefix.7 The size
of this longest suffix which is also a prefix will be known as the overlap function.
This overlap function will be used to compute the minimum shift such that all
characters of the text we have previously compared still match, and that no
matches have been skipped.

We can see the values for two examples.

ABCDABCE
Matched
Substring

Overlap Explanation

∅ ∅ (0) If no characters match, by defition we will shift
by 1.

A ∅ (0) There is no suffix of A which is a prefix. We
can skip all overlapping shifts.

AB ∅ (0) There is no suffix of AB which is a prefix. We
can skip all overlapping shifts.

ABC ∅ (0) There is no suffix of ABC which is a prefix.
We can skip all overlapping shifts.

ABCD ∅ (0) There is no suffix of ABCD which is a prefix.
We can skip all overlapping shifts.

ABCDA A (1) The longest suffix which is also a prefix is A.
We can shift by 4 to reach that matching over-
lap.

ABCDAB AB (2) The longest suffix which is also a prefix is AB.
We can shift by 4 to reach that matching over-
lap.

ABCDABC ABC (3) The longest suffix which is also a prefix is ABC
We can shift by 4 to reach that matching over-
lap.

ABCDABCE ∅ (8) There is no suffix which is a prefix. We can
skip all overlapping shifts.

7but shorter than the entire sub-pattern,which would result in no shift!

276

ABCABABABC
Matched
Substring

Overlap Explanation

∅ ∅ (0) If no characters match, by defition we will shift
by 1.

A ∅ (0) There is no suffix of A which is a prefix. We
can skip all overlapping shifts.

AB ∅ (0) There is no suffix of AB which is a prefix. We
can skip all overlapping shifts.

ABC ∅ (0) There is no suffix of ABC which is a prefix.
We can skip all overlapping shifts.

ABCA A (1) The longest suffix which is also a prefix is A.
We can shift by 3 to reach that matching over-
lap.

ABCAB AB (2) The longest suffix which is also a prefix is AB.
We can shift by 3 to reach that matching over-
lap.

ABCABA A (1) The longest suffix which is also a prefix is A.
We can shift by 5 to reach that matching over-
lap.

ABCABAB AB (2) The longest suffix which is also a prefix is AB
We can shift by 5 to reach that matching over-
lap.

ABCABABA A (1) The longest suffix which is also a prefix is A
We can shift by 7 to reach that matching over-
lap.

ABCABABAB AB (2) The longest suffix which is also a prefix is AB
We can shift by 7 to reach that matching over-
lap.

ABCABABABC ABC (3) The longest suffix which is also a prefix is ABC
We can shift by 7 to reach that matching over-
lap.

9.1.2.3 Preprocessing: Computing the Overlap Function

As the goal of the algorithm is linear time, we must be able to compute the over-
lap function in linear time as opposed to the naive quadratic implementation.
While it should be apparent that one can compute the overlap from the Z-func,8
our goal is not simplicity but comprehension. The alternative9 method shown
here better extends to further algorithms such as Aho-Corasick and therefore
its presentation is a pre-requisite for understanding such.

8The overlap is equivalent to the Z-box with the left most endpoint which covers a given
letter. We can extract all the necessary values by caterpillaring through the pattern, alterna-
tively iterating until the right end of the current Z-box is found, and then iterating until the
next Z-box left endpoint is found.

9actually the original

277

From a high level, we will compute the overlaps from left to right. To
compute Olap(i + 1), we will examine all suffixes which end at i which have a
corresponding overlappling prefix in decreasing order of length, and identify the
first10 one which has a matching character following the two instances.

We make this far clearer with a picture where we attempt to compute
Olap(i + 1) from Olap(i) and all other lesser values.

A0 A1

Olap(i) i

Figure 9.10: Consider Olap(i). We see the overlap itself A appears in totality
at both the beginning and end of the substring.

We will consider A as our first candidate and compare succeeding letters.

A0 A1

Olap(i) i

y x

Figure 9.11: The letters after A0 and A1 do not match, and therefore we cannot
simply extend A by 1. If those two letters had matched, we would simply set
Olap(i + 1) = Olap(i) + 1 and increment to solve for the next i.

As our current candidate failed, we must find the next longest candidate
overlap.

A0 A1B0 B1

Olap(i) i

y x

Figure 9.12: The substring B represents the next longest overlap which ends at
i and occurs at the beginning of the string.

We know we have to identify B, but how can we do so efficiently? Incre-
menting through each suffix in A and checking whether that substring is also a
prefix is too slow. The key lies in the fact that as we know that the two A boxes
are exact copies of eachother, there are actually two other instances of B.

10and therefore longest

278

A0 A1B0 B1B2 B3

Olap(i) i

y x

Figure 9.13: Since the two A boxes are identical, there must be at least 4
copies of B in the string: at the bounds of each A box. Note: The subscripts
on the label for each box do not carry semantic meaning, and are simply for
identification.

How can we use this information to quickly find B? If we look strictly at
A0, we note that there is a copy of B at both the start and end. Is there a way
to look up the longest string which is both a suffix and prefix of A? Of course!
It is exactly the Olap function we have computed at the right endpoint of A.
As the right endpoint of A is Olap(i), the size of B must be Olap(Olap(i)) or
Olap2(i).

A0 A1B0 B1B2 B3

Olap(i)Olap2(i) i

yz x

Figure 9.14: Iteratively applying the Olap function enabled us to find the length
of the next-longest suffix ending at i which is also a prefix. We again see that
there is no match.

The fun doesn’t stop there. Our next-longest overlap which is shorter than
B occurs at least 8 times in the string, twice in each B-box. For clarity, we only
draw the relevant instance.

A0 A1B0 B1B2 B3C0 C2 C1

Olap(i)Olap2(i)Olap3(i) i

yzx x

Figure 9.15: We iteratively apply Olap to find the next longest suffix ending at i
which is also a prefix has length Olap3(i). Examining the succeeding characteres
of C0 and C1 shows they are both the same. We can therefore set Olap(i+1) =
Olap3(i) + 1.

This leaves the following overall algorithm to compute Olap(i + 1) from all
lesser values of i:

1. Chose l as the longest suffix ending at i which is also a prefix by looking
up Olap(i).

2. Examine if the character at i + 1 is the same as the character at l + 1.

279

• If so, set Olap(i + 1) = Olap(i) + 1 and return.

3. Find the next longest suffix ending at i which is also a prefix by applying
l = Olap(l).

4. Loop to step 2, or exit with a base case if there are no more suffixes to
examine.

Listing 9.3: C++
Implementation
//assume a pattern, p.
//olap is the maximum overlap of a substring of length i.
int olap[p.size()+1]={};

// - start with box from previous index
// - recurse until the next char matches or we hit a base case
// - save box if we found one which matched
for(int i=2;i<=p.size();i++){

int box=olap[i-1];
while(box&&p[i-1]!=p[box])box=olap[box];
olap[i]=(p[box]==p[i-1])?box+1:0;

}

Rough Proof of Runtime We iterate through all values of i, which is at
best linear time. It would seem that the recursives step in the inner loop would
yield a runtime which is superlinear. We can bound the number of times we
perform this inner loop as follows:

• Consider the value of Olap(i) and how it changes as we iterate through
i. As its value increase by at most 1 from one value of i to the next, the
total amount it increases over the course of the function is at most n.

• Each call to Olap for a given value of i decreases the value of the overlap
function for the subsequent i. Specifically, each call decreases the maxi-
mum possible value of the subsequent Olap by at least 1. If 3 calls are
made, the value decreases by at least 1.11

• As the value of Olap only increases by n and is never negative, the de-
creases can also not exceed n. Any more than 2 calls to Olap for a given i
incrementally decreases the value. Therefore the total number of calls to
Olap cannot exceed 3n, which is O(n).

11If Olap is called once for a given value of i, then Olap increaeses by 1. If it is called twice,
the Olap increases by at most 0. If it is called 3 times, Olap decreaes by at least 1.

280

9.1.2.4 Alignment

Once the overlap function is known for all i, we can use it to compute all
matches. This is largely the before described process which we formalize here.

1. Align the pattern at index 0.

2. Iterate through the pattern, starting at the index of the last successful
comparison, comparing character to character

• If we reach the end of the pattern, indicate a match

3. Based on the last successfully compared character in the pattern, i, shift
to the next alignment, which is i − Olap(i), and begin comparison after
the last successfully compared character in the text.

We can use our original naive match as an example of the improved method.12

A B C A B A B A B C
A B A B C

Figure 9.16: i==0. Comparison fails after 2 characters in p. Olap(2) = 0, so
we shift by 2 − Olap(2) = 2 and begin comparison at the first unsuccessfully
compared character, the C.

A B C A B A B A B C
A B A B C

Figure 9.17: i==2. Comparison fails on the first character. By definition, we
will shift by 1 and must begin comparison on the next character.

A B C A B A B A B C
A B A B C

Figure 9.18: i==3. We successfully compared the first 4 characters of p before
reaching a failure. Olap(4) = 2, so we shift by 4 − Olap(4) = 2, and begin
comparison at the first unsuccessfully compared character, the A. Note that we
will never compare any of the 4 successfully compared characters of the text
again.

12While a reader should be able to compute it, the values for Olap in this pattern are
0,0,0,1,2,0.

281

A B C A B A B A B C
A B A B C

Figure 9.19: i==5. We began comparison at the last A, and matched the remain-
ing ABC, finding a match. Note that we only had to compare 3 total characters
in this step, as we previously compared the first two when i was 3. If the text
were longer, we would shift by 5− Olap(5) before continuing comparison at the
character after the C.

Rough Proof of Linearity Each character in the text is only compared suc-
cessfully once, for a total of O(n) successful comparisons. On a failed compari-
son, the pattern is shifted to a new alignment. As the number of alignments is
O(n−p), this limits the total number of failed comparisons to O(n) as well. The
overlap function is also computed in linear time, leading to an overall runtime
of O(n).

9.1.2.5 Implementation

The implementation, while straightforward, is finicky due to the potential for
off by one errors and other corner cases. For simplicitly, instead of explicitly
”shifting” the pattern and aligning to the text, we track the current pointer into
both the text and the pattern, and adjust those pointers as necessary.

Listing 9.4: C++
//assume a text, t, and a pattern, p.

//preprocess
int olap[p.size()+1]={};
for(int i=2;i<=p.size();i++){

int box=olap[i-1];
while(box&&p[i-1]!=p[box])box=olap[box];
olap[i]=(p[box]==p[i-1])?box+1:0;

}

//align
//the outer loop moves i through t one char at a time
//inside the loop, we shift p until it matches at i, or hit a base case
//if we have gotten j all the way through p, it indicates a match, so
//we have to shift to set up for next match
for(int i=0,j=0;i<t.size();i++){

while(j&&t[i]!=p[j])j=olap[j]; //shift
if(t[i]==p[j])j++; //advance in p
if(j==p.size()){ //match found!

cout<<i+1-p.size()<<"\n";
j=olap[j];

}
}

282

9.1.3 Multi-pattern Matching/Aho-Corasick
With KMP, we were able to optimize matching by iteratively aligning a pattern
with a text, and then optimizing by only checking certain alignments. Aho-
Corasick allows us to search for multiple patterns at once using similar intuition.

Naively, if we were to run KMP on each of P patterns, we would find we
take O(nP) time, as we need to interate through the text independently for
each pattern. We will see how this time can be reduced in the following high
level stages.

1. Match all patterns in a single pass of the text

2. Optimize the matching to yield a runtime proportional to O(n+p), where
n is the length of the text, and p is the total length of all patterns

3. Address the corner case where one pattern is a substring contained in
another

9.1.3.1 Single-Pass Matching

When we first introduced KMP, we saw in section ?? that we could naively
attempt to align a pattern at each index in the text. We can modify this
implementation to cope with multiple patterns in a single pass of the text using
a trie, and aligning each index in the text with the root of the trie. Once there
aligned, we will walk the trie to see if we reach the end node of some pattern.

We will walk through an example of this using the following words:13

• booboo

• booster

• oboe

The trie containing these three words appears as follows:
13Note that none of these are substrings of any other, a point which will be addressed in

section ??

283

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

Figure 9.20: Nodes where a pattern terminates are marked with a ’$’.

Consider matching these words against the text ”obeobooboe”. We attempt
to walk the trie starting at each index into the text.

284

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o

o

b

o

e

Figure 9.21: We walk the trie from the root. Upon comparing the third charac-
ter, we find there is no outgoing edge where we can continue to match against.
This is indicated by the red arrow, where the only outgoing edge from our cur-
rent node is ’o’, but the text is ’e’. There is no pattern that matches at this
alignment.

285

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o

o

b

o

e

Figure 9.22: At the next alignment, we again fail to find a match.

286

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o

o

b

o

e

Figure 9.23: Checking the next alignment doesn’t get far. This character
matches none of the edges emenating from the current node.

We can continue checking alignments, and see that all of them fail until we
reach one at the end:

287

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

...

o

o

b

o

e

Figure 9.24: At the final alignment, we reach the end node of some pattern,
indicating the text matches the pattern at this alignment.

After trying all possible alignments against the tree, we have found one
alignment which match some pattern in the trie. These constitute all matches
of the three patterns to the text. As we have tried each of n alignments, and
each alignment requires O(n) time to walk the tree, our runtime is O(n2).14

9.1.3.2 Preprocessing: Defining Overlap Edges

If we examine the alignments starting at index 1 (be...) and 2 (eo...), we notice
we can optimize as we did with KMP. The failed character (e) does not appear
at the start of any pattern, and therefore the next alignment (which starts with
e) cannot match any pattern, and can be skipped. To achieve this with KMP,
we defined the Olap function which provides the longest suffix of the pattern
where our comparison last succeeded which is also a prefix of the pattern.15

14It is also O(np).
15See the KMP section for further details on the intuition behind this.

288

After shifting by Olap, we were able to resume comparison at the same position
in the text.

We can apply similar logic to our trie in the following manner:

1. Compute the longest prefix of any pattern which is a suffix of the pattern
we were matching when comparison failed

2. Identify where in the trie to resume comparison to ensure we don’t suc-
cessfully compare a character of the text more than onces16

With KMP, the second condition was met trivially. When we shift by the
Olap, we know where to begin comparison again by simple subtraction.17. This
is more difficult with a trie, as after the shift, we don’t necessarily know which
pattern or patterns we should continue matching against, or put another way,
which branch of the trie we are in. To solve this purpose, we will extend the
Olap function to return instead of a length, a node in the trie. From each node
in the trie, if a comparison fails, instead of subtracting the Olap, we will traverse
this special Olap edge and resume comparison.18

The edge is formally defined as follows.

Consider the sequence of letters required to traverse from the
root to some node as that nodes label. Consider all suffixes of this
label, and further, such suffixes which themselves are the label of
some other node in the trie. The Olap edge is the edge from the
former node to the node which is labeled by the longest such suffix.

Each node has an Olap edge (the degenerate case points back to the root),
and it is unique.19 If suffix edges were drawn on a trie which only had a single
pattern, the edges would traverse exactly from a node representing character i
to the node representing character Olap(i), as defined by KMP. In KMP, we
resume comparison with the character immediately after that defined by the
Olap, and here, we resume comparison with the characters immediately after
the node defined by the Olap edge.

Our trie is redrawn here with all Olap edges shown.
16As with KMP, achieving linear time requires such a strict condition
17See the Alignment section
18This edge is called various things in various sources, such as ”Suffix edge” or ”failure

links”. We choose our terminology to demonstrate the relationship to KMP.
19Every string has at most one node representing it in the trie, and all considered suffixes

have distinct length.

289

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

Figure 9.25: Nodes with their Olap edges drawn in dashed lines. Each node has
an edge to the node such that the overlap of the destination nodes label and
the suffix of the label of the source node is maximal.

The visualization of the Olap edges is very cluttered, so let’s view a descrip-
tion of each such edge in table form:

290

Label Overlap
Label

Explanation

∅ ∅ If no characters matched, and therefore we are
still at the start node, we will shift by one and
continue comparison at the root.

b ∅ There is no suffix of b in the trie. We resume
comparison at the root.

bo o The longest suffix of bo which is the prefix
of some pattern is o. We resume comparison
matching oboe.

boo o The longest suffix of boo which is the prefix
of some pattern is o. We resume comparison
matching oboe.

boob ob The longest suffix of boob which is the prefix
of some pattern is ob. We resume comparison
matching oboe.

boobo obo The longest suffix of boobo which is the prefix
of some pattern is obo. We resume comparison
matching oboe.

booboo boo The longest suffix of booboo which is the pre-
fix of some pattern is boo. We resume com-
parison matching booboo or booster.

boos ∅ There is no suffix of boos in the trie. We skip
all overlapping shifts and resume at the root.

boost ∅ There is no suffix of boost in the trie. We skip
all overlapping shifts and resume at the root.

booste ∅ There is no suffix of booste in the trie. We
skip all overlapping shifts and resume at the
root.

booster ∅ There is no suffix of booster in the trie. We
skip all overlapping shifts and resume at the
root.

o ∅ There is no suffix of o in the trie. We resume
comparison at the root.

ob b The longest suffix of ob which is the prefix
of some pattern is b. We resume comparison
matching booboo or booster.

obo bo The longest suffix of obo which is the prefix
of some pattern is bo. We resume comparison
matching booboo or booster.

oboe ∅ There is no suffix of oboe in the trie. We skip
all overlapping shifts and resume at the root.

The table descriptions are naturally very similar to those presented for KMP.
The major difference is instead of a raw length, we produce a node itself. The
number of alignments which end up ”skipped” is implied by the difference in

291

length between the label and overlap label.

9.1.3.3 Preprocessing: Computing Overlap Edges

While it may seem difficult to compute these edges, the logic by which we
compute the Olap function for KMP applies almost directly.

The following algorithm computes Olapedge(nc) for some node nc, repre-
senting a node n’s child, following an edge labeled with character c, assuming
Olapedge has been computed for n and all its direct ancestors.

1. Choose p as the node whose label contains the longest suffix of n by looking
up Olapedge(n).

2. Examine if p has an outgoing edge c, pointing at some pc.

• If so, set Olapedge(nc) to pc and return.

3. Find the node whose label contains the next longest suffix of n by applying
p = Olapedge(p).

4. Loop to step 2, or exit with a base case if there are no more suffixes to
examine.

The proof of correctness is nearly identical to the justification of the KMP
algorithm. At each step, the label of p is the longest suffix which terminates at
n, and therefore the longest suffix which terminates at p and exists in the trie
must be exactly the next longest such suffix of n.20

Similarly, the proof of linearlity follows from that of KMP.

1. Consider the depth of the node pointed to by Olapedge as we progress
down a branch of the trie. It increases by 1 from one node to the next.
Therefore the total amount it increases over the progression from the root
to some leaf node is at most the depth of that leaf.

2. Each recursive call to Olapedge for a given value of nc reduces the depth
of the candidate pc by at least 1.

3. As depth cannot be negative, and the total increase for any branch is
linear, the total number of calls to Olapedge to compute that function for
the entire branch is also linear. Therefore, the total number of calls to
Olapedge for the entire tree must be O(p).

20The reader is encouraged to review the computation of the Olap function for KMP if this
is not fully understood. The boxes there-presented apply equally to branches of the trie as
they do to a single pattern.

292

9.1.3.4 Alignment

Once the overlap edge is known for all nodes, we can use it to compute all
matches. This is done simply by comparing each character of the text in turn
with our current location in the trie. If an edge exists, we follow it, otherwise
we follow the Olapedge. The alignment is implicitly defined by the depth in the
trie and the charatcter we are currently comparing.21

We return to our example.
21Recall that our goal is to only successfully compare each character once, so we can maintain

an index of that character to imply the alignment without actually storing it.

293

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o?

b

e

o

b

o

o

b

o

e

Figure 9.26: In the first alignment, and starting at the root, we match an
outgoing edge o.

294

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b?

e

o

b

o

o

b

o

e

Figure 9.27: Continuing from the o node, we match an outgoing edge b.

295

Start

$

$

$

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e?

o

b

o

o

b

o

e

Figure 9.28: Continuing from the ob node, we do not find a match for e, so we
follow the overlap edge.

Note that as we have followed an overlap edge, the depth of the node we are
currently at has decreased. As we are still comparing the same character in the
text, as indicated by the question mart, the alignment of the text against the
trie shifts. This is seen in the following image, where instead of the ’o’ being
the first character matched to some edge, the ’b’ is.

296

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e?

o

b

o

o

b

o

e

Figure 9.29: Continuing from the b node, we do not find a match for e, so we
follow the overlap edge back to the root.

297

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e?

o

b

o

o

b

o

e

Figure 9.30: Continuing from the root node, we do not find a match for e, so
we follow the overlap edge back to the root.

As we are traversing the root node to itself, we know that no pattern can
match at this alignment in the text. We explicitly increment the alignment
of the text and the trie. This is the only time in the algorithm this happens
explicitly. It is regulaly implied by the decrease in depth of the current node we
are comparing to relative to the text.

298

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o?

b

o

o

b

o

e

Figure 9.31: Starting at the root, we match the outgoing edge o.

299

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b?

o

o

b

o

e

Figure 9.32: Continuing from the o node, we match an outgoing edge b.

300

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o?

o

b

o

e

Figure 9.33: Continuing from the ob node, we match an outgoing edge o.

301

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o

o?

b

o

e

Figure 9.34: We do not find an outgoing edge for the o, so we follow the overlap
edge.

302

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o

o?

b

o

e

Figure 9.35: After implicitly following the overlap edge, we now find a match
for the o.

303

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o

o

b?

o

e

Figure 9.36: We find a match for the b.

304

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o

o

b

o?

e

Figure 9.37: We find a match for the o.

305

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o

o

b

o

e?

Figure 9.38: We do not find a match for the e, so follow the overlap edge.

After following the overlap edge in this stage, note that as the depth of the
node we are on decreased by 2, we have effectively skipped one alignment of the
text relative to the tree, saving valuable computation.

306

Start

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

o

b

e

o

b

o

o

b

o

e?

Figure 9.39: We find a match for the e.

At this stage in the algorithm, we have arived at the terminal node of some
pattern. We should at this point record the match, including which pattern we
found, and at which index we found it. While our text ends here, were it to

307

continue, we would note there are no outgoing edges from that node, and follow
the overlap edge, as usual.

Proof of Linearity Each comparison of a character either results to pro-
gressing to the next character in the text, or following an overlap edge. As the
overlap edge always decreases the depth of the current node by at least 1, the
alignment of the text to the trie is also shifted by at least one. As there are
only O(n) alignments, the total runtime of this step is also O(n). Combined
with the time to compute the overlap edges, we have performed the algorithm
in O(n + p) time.

9.1.3.5 Corner Case: Patterns Containing Other Patterns

Recall we made the assumption that no pattern is a substring of some other
pattern. Our previous example was precisely constructed to avoid this possibil-
ity. If it were the case, executing the algorithm as described above may miss
matches. We can see this trivially by adding the pattern ”ob” to our search.
The modified trie appears as follows:

Start

$

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

Figure 9.40: The ob node now indicates a pattern terminates there.

308

It is easy to see this pattern may be missed. Consider matching simply the
word ”booboo.” Executing the algorithm as described will discover the match
of booboo itself,, as well as the match of the entire word, but will miss the the
occurrence of ’ob’.

To resolve this issue, we need a way to indicate while traversing distal parts
of the tree, that we may have traversed a match of some other contained pattern.
In this case, for every instance of ob in the trie, we must be able to know that
ob is a match in itself. More generally, if the suffix ending at a given node is a
complete match elsewhere in the trie, we must indicate so. To accomplish this,
we will link all such nodes with a third type of edge we’ll call a pattern edge.22

A pattern edge will be drawn from a node to a terminal node whose label is
both a suffix of the source node, and for which the length of that match is the
longest of any other matching suffix in the trie. By this definition, we can glean
two things:

1. Each node has at most one pattern edge.23

2. By recursively following pattern edges from a given node, we can identify
all patterns which are suffixes of the label of the that node.24

The trie amended with the pattern edge appears as follows:
22Also known as a dictionary link or output link in other texts. There is no good justification

for not choosing one of these terminologies here, but we haven’t used precendented terminology
yet, so why start now?

23There is at most one pattern of a given length which is wholly contained and terminates
at any particular index in any individual pattern.

24If two patterns of different lengths terminate at the same index in some third pattern, the
shorter of those two patterns must be a suffix of the longer, and thus have a pattern edge, or
by induction, a chain of pattern edges to reach from the longer to the shorter.

309

Start

$

$

$

$

b

o

o

b

o

o

s

t

e

r

o

b

o

e

Figure 9.41: The dotted edge indicates there is a remote node in the tree which
has a suffix ”ob”. Traversals of that node must indicate that a match was found.

If we knew all such pattern edges, we could amend the algorithm as follows:
When traversing a node, if there is an outgoing pattern edge,

recursively follow it and record all matches. Once complete, resume
matching at the original node.

In the case of our example matching ”booboo,” we traverse the node ”boob”
and detect the pattern edge. We note the match represented by the destination
”ob” node, as well as there are no pattern edges originating from that node.
We then proceed matching from the original ”boob” node. Care must be taken
when following an overlap edge after following a pattern edge to ensure that
the pattern is not matched a second time, nor are subsequent edges duplicately
followed, as might be the case if matching booboe.25

Upon adding this modification, we add another term to the runtime, k, the
number of matches. As we may have to follow a pattern edge to form a match

25Note that while in this case the pattern and overlap edges are the same, that is not always
the case. We can guarantee, however, the overlap edge is at least as deep as the pattern edge,
and that if they are not the same, then the source and destination of the overlap edge both
contain exactly the same pattern edge.

310

without advancing either the current character in the text or the alignment of
the text to the trie, it must be added, leading to a runtime of at least O(n+p+k).

Computing Pattern Edges The question then remains how to efficiently
compute the edges. As the pattern edges are a subset of all suffixes of a given
node which exist in the trie, we can do this while computing overlap edges using
the following rule:

1. If Olapedge(n) is the terminal node of a pattern, draw a pattern edge. It
is, by definition, the longest suffix which exists in the trie, and thus there
can be no longer pattern which is a suffix.

2. If Olapedge(n) is not a terminal, but has a pattern edge, draw a pattern
edge fron n to the destination of that preexisting pattern edge.26

3. Otherwise, do not draw a pattern edge.27

As this process adds only a constant time evaluation at each node, it does not
impact the overall runtime of what is now a complete Aho-Corasick algorithm.

9.1.3.6 Implementation

Despite being substantially similar in idea,28 the implementation of aho-corasick
is far trickier, as it involves the construction of a tree29 rather than a simple
integer valued function.

26Suppose this node is not the longest complete pattern which is a suffix of n. Either it
is longer than the destination of the overlap edge(in which case the definition of the overlap
edge is contradicted as this suffix is longer), it is the same length as the destination of the
overlap edge (violating the assertion that node is not a terminal), or it is shorter than the
length of the destination of the overlap edge (in which case it also must be the pattern edge
of Olapedge(n)).

27The proof that this finds all terminal edges is a direct corollary to the proof of case 2. If
any pattern existed, it must be findable via the overlap edge.

28formally, KMP is a specific case of Aho-Corasick
29with multiple types of edges

311

	Strings
	Pattern Matching
	Z Function
	Applications
	Implementation

	Knuth-Morris-Pratt
	Intuition
	Preprocessing: Defining the Overlap Function
	Preprocessing: Computing the Overlap Function
	Alignment
	Implementation

	Multi-pattern Matching/Aho-Corasick
	Single-Pass Matching
	Preprocessing: Defining Overlap Edges
	Preprocessing: Computing Overlap Edges
	Alignment
	Corner Case: Patterns Containing Other Patterns

